【題目】《九章算術(shù)》卷第五《商功》中,有“賈令芻童,上廣一尺,袤二尺,下廣三尺,袤四尺,高一尺。”,意思是:“假設(shè)一個芻童,上底面寬1尺,長2尺;下底面寬3尺,長4尺,高1尺(如圖)。”(注:芻童為上下底面為相互平行的不相似長方形,兩底面的中心連線與底面垂直的幾何體),若該幾何體所有頂點在一球體的表面上,則該球體的表面積為( )
A. 平方尺 B. 平方尺 C. 平方尺 D. 平方尺
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.對具有線性相關(guān)關(guān)系的變量有一組觀測數(shù)據(jù),其線性回歸方程是,且,則實數(shù)的值是
B.正態(tài)分布在區(qū)間和上取值的概率相等
C.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1
D.若一組數(shù)據(jù)的平均數(shù)是2,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知點,圓的方程為,點是圓上任意一點,線段的垂直平分線和直線相交于點.
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)過點能否作一條直線,與點的軌跡交于兩點,且點為線段的中點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上無零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點是棱的中點,,點在平面的射影為,為棱上一點,
(Ⅰ)求證:平面平面;
(Ⅱ)若為棱的中點,,求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系(),點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為。
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)設(shè)點的極坐標(biāo)為,求面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若是函數(shù)的極值點,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)已知,當(dāng),試比較與的大小,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明口袋中有3張10元,3張20元(因紙幣有編號認定每張紙幣不同),現(xiàn)從中掏出紙幣超過45元的方法有_______種;若小明每次掏出紙幣的概率是等可能的,不放回地掏出4張,剛好是50元的概率為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com