【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系(),點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為。
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)設(shè)點的極坐標(biāo)為,求面積的最小值。
【答案】(Ⅰ) :;:(Ⅱ)2
【解析】
(1)由曲線C1的參數(shù)方程能求出曲線C1的普通方程,由此能求出曲線C的極坐標(biāo)方程;設(shè)點B的極坐標(biāo)為(ρ,θ),點A的極坐標(biāo)為(ρ0,θ0),則|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,從而ρρ0=8,由此能求出C2的極坐標(biāo)方程.
(2)由|OC|=2,S△ABC=S△OBC﹣S△OAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,由此能求出S△ABC的最小值.
(1)∵曲線C1的參數(shù)方程為(α為參數(shù)),
∴曲線C1的普通方程為x2+y2﹣2x=0,
∴曲線C的極坐標(biāo)方程為ρ=2cosθ,
設(shè)點B的極坐標(biāo)為(ρ,θ),點A的極坐標(biāo)為(ρ0,θ0),
則|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,
∵|OA||OB|=8,∴ρρ0=8,
∴,ρcosθ=4,
∴C2的極坐標(biāo)方程為ρcosθ=4.
(2)由題設(shè)知|OC|=2,
S△ABC=S△OBC﹣S△OAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,
當(dāng)θ=0時,S△ABC取得最小值為2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)在處取得極值,(0,),恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》卷第五《商功》中,有“賈令芻童,上廣一尺,袤二尺,下廣三尺,袤四尺,高一尺。”,意思是:“假設(shè)一個芻童,上底面寬1尺,長2尺;下底面寬3尺,長4尺,高1尺(如圖)!保ㄗⅲ浩c童為上下底面為相互平行的不相似長方形,兩底面的中心連線與底面垂直的幾何體),若該幾何體所有頂點在一球體的表面上,則該球體的表面積為( )
A. 平方尺 B. 平方尺 C. 平方尺 D. 平方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示,其中,,.
(Ⅰ)求的解析式;
(Ⅱ)求在區(qū)間上的最大值和最小值;
(Ⅲ)寫出的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f'(x),x∈R,有f(-x)+f(x)=x2,在(0,+∞)上,f'(x)<x,若f(6-m)-f(m)-18+6m≥0,則實數(shù)m的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
(1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為了解學(xué)生對學(xué)校食堂服務(wù)的滿意度,隨機(jī)調(diào)查了50名男生和50名女生,每位學(xué)生對食堂的服務(wù)給出滿意或不滿意的評價,得到如圖所示的列聯(lián)表.經(jīng)計算的觀測值,則可以推斷出( )
滿意 | 不滿意 | |
男 | 30 | 20 |
女 | 40 | 10 |
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
A.該學(xué)校男生對食堂服務(wù)滿意的概率的估計值為
B.調(diào)研結(jié)果顯示,該學(xué)校男生比女生對食堂服務(wù)更滿意
C.有95%的把握認(rèn)為男、女生對該食堂服務(wù)的評價有差異
D.有99%的把握認(rèn)為男、女生對該食堂服務(wù)的評價有差異
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年9月第三個公休日是全國科普日.某校為迎接2019年全國科普日,組織了科普知識競答活動,要求每位參賽選手從4道“生態(tài)環(huán)保題”和2道“智慧生活題”中任選3道作答(每道題被選中的概率相等),設(shè)隨機(jī)變量ξ表示某選手所選3道題中“智慧生活題”的個數(shù).
(Ⅰ)求該選手恰好選中一道“智慧生活題”的概率;
(Ⅱ)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com