【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.
(1)求圓C的方程;
(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.
【答案】(1);(2)存在,且.
【解析】試題分析:(1)設出圓心坐標,根據直線與圓相切,得到圓心到直線的距離,確定出圓心坐標,即可得出圓方程;(2)當直線軸,則軸平分,當直線斜率存在時,設直線方程為,聯(lián)立圓與直線方程,消去得到關于的一元二次方程,利用韋達定理表示出兩根之和與兩根之積,由若軸平分,則,求出的值,確定出此時坐標即可.
試題解析:(1)設圓心C(a,0) ,則或a=-5(舍),所以圓C:x2+y2=4.
(2)當直線AB⊥x軸時,x軸平分∠ANB,當直線AB的斜率存在時,設直線AB的方程為y=k(x-1),N(t,0),A(x1,y1),B(x2,y2),由得(k2+1)x2-2k2x+k2-4=0,所以, ,若x軸平分∠ANB,則 2x1x2-(t+1)(x1+x2)+2t=0,所以當點N為(4,0)時,能使得∠ANM=∠BNM總成立.
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為S,a2+a6=20,S5=40.
(1)求{an}的通項公式;
(2)設等比數列{bn}滿足b2=a3 , b3=a7.若b6=ak , 求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省2016年高中數學學業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標準如下:85分及以上,記為A等;分數在[70,85)內,記為B等;分數在[60,70)內,記為C等;60分以下,記為D等.同時認定A,B,C為合格,D為不合格.已知某學校學生的原始成績均分布在[50,100]內,為了了解該校學生的成績,抽取了50名學生的原始成績作為樣本進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.
(Ⅰ)求圖中x的值,并根據樣本數據估計該校學生學業(yè)水平測試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學生中隨機抽取3名學生進行調研,用X表示所抽取的3名學生中成績?yōu)镈等級的人數,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是公差不為零的等差數列,滿足數列的通項公式為
(1)求數列的通項公式;
(2)將數列,中的公共項按從小到大的順序構成數列,請直接寫出數列的通項公式;
(3)記,是否存在正整數 ,使得成等差數列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個多面體的直觀圖、正視圖、側視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點.
下列結論中正確的個數有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為=a3.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構成,曲線AB和曲線DE分別是頂點在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點B、D處的切線相同,若橋的最高點C到水平面的距離H=6米,圓弧的弓高h=1米,圓弧所對的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com