【題目】(題文)已知橢圓的離心率為,過點的直線交橢圓與兩點,,且當(dāng)直線垂直于軸時,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求弦長的取值范圍.
【答案】(1) .
(2) .
【解析】
試題分析:圓錐曲線中求范圍問題的關(guān)鍵是建立求解關(guān)于某個變量的目標(biāo)函數(shù),通過求這個函數(shù)的值域確定目標(biāo)的范圍.在建立函數(shù)的過程中要根據(jù)題目的其他已知條件,把需要的量都用我們選用的變量表示,有時為了運算的方便,在建立關(guān)系的過程中也可以采用多個變量,只要在最后結(jié)果中把多變量歸結(jié)為單變量即可,同時要特別注意變量的取值范圍.
試題解析:(Ⅰ)由已知:,,
又當(dāng)直線垂直于軸時,,所以橢圓過點,
代入橢圓:,
在橢圓中知:,聯(lián)立方程組可得:,
所以橢圓的方程為:.
(Ⅱ)當(dāng)過點直線斜率為0時,點、分別為橢圓長軸的端點,
或,不合題意.
所以直線的斜率不能為0.
可設(shè)直線方程為: ,
將直線方程代入橢圓得:
,由韋達(dá)定理可得:
,
將(1)式平方除以(2)式可得:
由已知可知,,
,
所以,
又知,,
,解得:.
,,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設(shè)備,從圓心O點出發(fā),在地下鋪設(shè)4條到A,B,C,D四點線路OA,OB,OC,OD.
(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設(shè)的4條線路OA,OB,OC,OD總長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,P為雙曲線C上的一點,線段PF1與y軸的交點M恰好是線段PF1的中點,,其中O為坐標(biāo)原點,則雙曲線C的漸近線的斜率與離心率分別是( )
A. ±1, B. 1, C. ±2, D. 2,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
②若函數(shù)在上有兩個零點,則的取值范圍是;
③函數(shù)在上單調(diào)遞減;
④當(dāng)時,函數(shù)的最大值為.
上述命題正確的是__________(填序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)。
(1)求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過點.
(1)求橢圓的方程
(2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于、兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+2﹣2cosx
(1)求函數(shù)f(x)在[,]上的最值:
(2)若存在x∈(0,)使不等式f(x)≤ax成立,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,過點作的垂線,交的延長線于點,.連結(jié),交于點,如圖1,將沿折起,使得點到達(dá)點的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點,為的中點,且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數(shù)量與日俱增.由于該小區(qū)建成時間較早,沒有配套建造地下停車場,小區(qū)內(nèi)無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計了近五年小區(qū)登記在冊的私家車數(shù)量(累計值,如147表示2016年小區(qū)登記在冊的所有車輛數(shù),其余意義相同),得到如下數(shù)據(jù):
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數(shù)量(單位:輛) | 37 | 104 | 147 | 196 | 216 |
(1)若私家車的數(shù)量與年份編號滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測2020年該小區(qū)的私家車數(shù)量;
(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個停車位.為解決小區(qū)車輛亂停亂放的問題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進(jìn)入小區(qū).由于車位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式將車位對業(yè)主出租,租期一年,競拍方案如下:①截至2018年己登記在冊的私家車業(yè)主擁有競拍資格;②每車至多中請一個車位,由車主在競拍網(wǎng)站上提出申請并給出自己的報價;③根據(jù)物價部門的規(guī)定,競價不得超過1200元;④申請階段截止后,將所有申請的業(yè)主報價自高到低排列,排在前120位的業(yè)主以其報價成交;⑤若最后出現(xiàn)并列的報價,則以提出申請的時間在前的業(yè)主成交,為預(yù)測本次競拍的成交最低價,物業(yè)公司隨機(jī)抽取了有競拍資格的40位業(yè)主,進(jìn)行了競拍意向的調(diào)查,并對他們的擬報競價進(jìn)行了統(tǒng)計,得到如圖頻率分布直方圖:
(i)求所抽取的業(yè)主中有意向競拍報價不低于1000元的人數(shù);
(ii)如果所有符合條件的車主均參與競拍,利用樣本估計總體的思想,請你據(jù)此預(yù)測至少需要報價多少元才能競拍車位成功?(精確到整數(shù))
參考公式及數(shù)據(jù):對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計分別為:;.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com