精英家教網 > 高中數學 > 題目詳情

【題目】《九章算術》中“竹九節(jié)”問題:現有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )

A. B. C. D.

【答案】A

【解析】分析:設此等差數列為{an},公差d0,由題意可得:a1+a2+a3+a4=3,a7+a8+a9=4,可得4a1+6d=3,3a1+21d=4,聯立解出即可得出a1與d的值,由等差數列的通項公式計算可得答案.

詳解:根據題意,設該竹子自上而下各節(jié)的容積為等差數列{an},

設其公差為d,且d>0,

由題意可得:a1+a2+a3+a4=3,a7+a8+a9=4,

則4a1+6d=3,3a1+21d=4,

解可得a1=,d=

則第6節(jié)的容積a6=a1+5d=

故答案為:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某學校高三年級800名學生在一次百米測試中,成績全部在12秒到17秒之間,抽取其中50個樣本,將測試結果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據上述分組得到的頻率分布直方圖.
(1)若成績小于13秒被認為優(yōu)秀,求該樣本在這次百米測試中成績優(yōu)秀的人數;
(2)請估計本年級800名學生中,成績屬于第三組的人數;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知值域為[﹣1,+∞)的二次函數滿足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的兩個實根x1 , x2滿足|x1﹣x2|=2.
(1)求f(x)的表達式;
(2)函數g(x)=f(x)﹣kx在區(qū)間[﹣1,2]內的最大值為f(2),最小值為f(﹣1),求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2﹣(a2+1)x+alnx.
(Ⅰ)若函數f(x)在[ , e]上單調遞減,求實數a的取值范圍;
(Ⅱ)當a時,求f(x)在[1,2]上的最大值和最小值.(注意:ln2<0.7)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy,曲線C1C2的參數方程分別是 (t是參數) (φ為參數).以原點O為極點,x軸的正半軸為極軸建立極坐標系.

(1)求曲線C1的普通方程和曲線C2的極坐標方程;

(2)射線OMθα與曲線C1的交點為OP,與曲線C2的交點為OQ,|OP|·|OQ|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn(n∈N*),且滿足an+2Sn=2n+2.
(1)求數列{an}的通項公式;
(2)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等腰梯形ABCD中,E、F分別是CD、AB的中點,CD=2,AB=4,AD=BC=.沿EF將梯形AFED折起,使得∠AFB=60°,如圖.

(1)若G為FB的中點,求證:AG⊥平面BCEF;

(2)求二面角C-AB-F的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩點,直線AM,BM相交于點M,且這兩條直線的斜率之積為.

(1)求點M的軌跡方程;

(2)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標為1,過點P的斜率不為零且互為相反數的兩條直線分別交曲線CQ,R(異于點P),求直線QR的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.

(1)求橢圓的方程;

(2)直線與橢圓交于兩點,點位于第一象限,是橢圓上位于直線兩側的動點.

(i)若直線的斜率為,求四邊形面積的最大值;

(ii)當點運動時,滿足,問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

同步練習冊答案