【題目】已知數(shù)列{an}的前n項和為Sn(n∈N*),且滿足an+2Sn=2n+2.
(1)求數(shù)列{an}的通項公式;
(2)求證:

【答案】
(1)解:∵an+2Sn=2n+2,令n=1,得

由an+2Sn=2n+2得 n≥2時,an1+2Sn1=2(n﹣1)+2,

兩式相減得;3an=an1+2,

,

∴數(shù)列{an﹣1}是以首項為 ,公比為 的等比數(shù)列,

,∴


(2)證明:

= ,

= = =


【解析】(1)由an+2Sn=2n+2,利用遞推關(guān)系可得:3an=an1+2,變形為 ,再利用等比數(shù)列的通項公式即可得出.(2)利用“裂項求和”方法與數(shù)列的單調(diào)性即可得出.
【考點精析】本題主要考查了數(shù)列的通項公式的相關(guān)知識點,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值為( 。

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果執(zhí)行程序框圖,且輸入n=6,m=4,則輸出的p=(  )

A.240
B.120
C.720
D.360

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(
A.命題p:“?x0∈R, ”,則命題?p:?x∈R,x2﹣2x+1>0
B.“l(fā)na>lnb”是“2a>2b”的充要條件
C.命題“若x2=2,則 ”的逆否命題是“若 ,則x2≠2”
D.命題p:?x0∈R,1﹣x0<lnx0;命題q:對?x∈R,總有2x>0;則p∧q是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在非零實數(shù)集上的函數(shù),f′(x)為其導函數(shù),且x>0時,xf′(x)﹣f(x)<0,記a= ,b= ,c= ,則(
A.a<b<c
B.c<a<b
C.b<a<c
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , 則下列說法不正確的是(
A.若點P在直線BC1上運動時,三棱錐A﹣D1PC的體積不變
B.若點P是平面A1B1C1D1上到點D和C1距離相等的點,則P點的軌跡是過D1點的直線
C.若點P在直線BC1上運動時,直線AP與平面ACD1所成角的大小不變
D.若點P在直線BC1上運動時,二面角P﹣AD1﹣C的大小不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記min{x,y}= 設(shè)f(x)=min{x2 , x3},則(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校某文具商店經(jīng)營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價處理,每處理一件文具虧損1元;若供不應求,則可以從外部調(diào)劑供應,此時每件文具僅獲利2元.為了了解市場需求的情況,經(jīng)銷商統(tǒng)計了去年一年(52周)的銷售情況.

銷售量(件)

10

11

12

13

14

15

16

周數(shù)

2

4

8

13

13

8

4

以去年每周的銷售量的頻率為今年每周市場需求量的概率.
(1)要使進貨量不超過市場需求量的概率大于0.5,問進貨量的最大值是多少?
(2)如果今年的周進貨量為14,寫出周利潤Y的分布列;
(3)如果以周利潤的期望值為考慮問題的依據(jù),今年的周進貨量定為多少合適?

查看答案和解析>>

同步練習冊答案