設(shè)橢圓中心在坐標(biāo)原點,是它的兩個頂點,直線與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.

(Ⅰ)解:依題設(shè)得橢圓的方程為
直線的方程分別為,.············ 2分
如圖,設(shè),其中,

滿足方程,故.①
,得;
上知,得.所以,
化簡得,解得.················ 6分
(Ⅱ)根據(jù)點到直線的距離公式和①式知,點的距離分別為
.9分
,所以四邊形的面積為

當(dāng),即當(dāng)時,上式取等號.所以的最大值為

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點,M為AB的中點,O為坐標(biāo)原點,且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)已知拋物線D的頂點是橢圓的中心,焦點與該橢圓的右焦點重合。
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A,B兩點
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程,如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
已知橢圓,斜率為的直線交橢圓兩點,且點在直線的上方,
(1)求直線軸交點的橫坐標(biāo)的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且

(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O:,點O為坐標(biāo)原點,一條直線與圓O相切并與橢圓交于不同的兩點A、B
(1)設(shè),求的表達式;
(2)若,求直線的方程;
(3)若,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線和直線沒有公共點(其中為常數(shù)),動點是直線上的任意一點,過點引拋物線的兩條切線,切點分別為、,且直線恒過點.
(1)求拋物線的方程;
(2)已知點為原點,連結(jié)交拋物線、兩點,
證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

21.(本小題滿分14分)
已知直線過拋物線的焦點且與拋物線相交于兩點,自向準(zhǔn)線作垂線,垂足分別為 
(1)求拋物線的方程;
(2)證明:無論取何實數(shù)時,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,
且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案