已知橢圓的離心率,A,B分別為橢圓的長軸和短軸的端點(diǎn),M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時直線的方程.

解:(Ⅰ)橢圓的方程為.
(Ⅱ)當(dāng)直線的方程為時,面積最大.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)直線與雙曲線相交于兩點(diǎn),
(1)求的取值范圍
(2)當(dāng)為何值時,以為直徑的圓過坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知焦點(diǎn)在坐標(biāo)軸上的雙曲線,它的兩條漸近線方程為,焦點(diǎn)到漸近線的距離為,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
 (Ⅱ)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 如圖,設(shè)P是圓x2+y2=25上的動點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=PD.

(Ⅰ)當(dāng)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,且.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且斜率不為的直線交橢圓,兩點(diǎn).試問軸上是否存在定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O:軸于A,B兩點(diǎn),曲線C是以為長軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn)連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動時(不與AB重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知橢圓C:(a>b>0)的離心率為,短軸一個端點(diǎn)到右焦點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點(diǎn)P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個頂點(diǎn),直線與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案