已知橢圓C:.
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,
且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)圓O是以橢圓E的長(zhǎng)軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時(shí),求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知橢圓C:(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動(dòng)點(diǎn)P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知橢圓經(jīng)過點(diǎn),其離心率為.
(1) 求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),以線段為鄰邊作平行四邊形,其中頂點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn).求到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若拋物線y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9.它到焦點(diǎn)的距離為10,求拋物線方程和M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,點(diǎn)P到兩定點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為,過點(diǎn)的直線C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)設(shè)d為A、B兩點(diǎn)間的距離,d是否存在最大值、最小值,若存在, 求出d的最大值、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)、分別是橢圓,的左、右焦點(diǎn),是該橢圓上一個(gè)動(dòng)點(diǎn),且,。
、求橢圓的方程;
、求出以點(diǎn)為中點(diǎn)的弦所在的直線方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com