【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),f(0)0,當(dāng)x>0時(shí),

f(x).

(1)求函數(shù)f(x)的解析式;

(2)解不等式f(x21)>2.

【答案】(1) (2)

【解析】試題分析:(1)設(shè)x<0,可得-x>0,則f(-x)=再由函數(shù)f(x)是偶函數(shù)求出x<0時(shí)的解析式,則答案可求;
(2)由f(4)==2,因?yàn)?/span>f(x)是偶函數(shù),不等式f(x2-1)>-2可化為f(|x2-1|)>f(4),利用函數(shù)f(x)在(0,+∞)上是減函數(shù),可得|x2-1|<4,求解絕對(duì)值的不等式可得原不等式的解集.

試題解析:

(1)當(dāng)x<0時(shí),-x>0,則f(x)log (x).

因?yàn)楹瘮?shù)f(x)是偶函數(shù),所以f(x)f(x)log (x),

所以函數(shù)f(x)的解析式為

f(x)

(2)因?yàn)?/span>f(4)log4=-2f(x)是偶函數(shù),

所以不等式f(x21)>2轉(zhuǎn)化為f(|x21|)>f(4).

又因?yàn)楹瘮?shù)f(x)(0,+∞)上是減函數(shù),

所以|x21|<4,解得-<x<

即不等式的解集為().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1;

(2)若函數(shù)f(x)R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x3對(duì)任意xR恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

已知函數(shù)其中

當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

)證明: 在區(qū)間上恰有個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=,則下列結(jié)論中錯(cuò)誤的是(  )

A. AC⊥BE

B. EF∥平面ABCD

C. 三棱錐A-BEF的體積為定值

D. △AEF的面積與△BEF的面積相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且以兩焦點(diǎn)為直徑的圓的內(nèi)接正方形面積為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于 兩點(diǎn),在軸上是否存在點(diǎn),使直線的斜率之和為定值?若存在,求出點(diǎn)坐標(biāo)及該定值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別是,點(diǎn)在橢圓上, 是等邊三角形.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)點(diǎn)在橢圓上,線段與線段交于點(diǎn),若的面積之比為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為.

(Ⅰ)求得方程;

(Ⅱ)設(shè)點(diǎn)在曲線上, 軸上一點(diǎn)(在點(diǎn)右側(cè))滿足.平行于的直線與曲線相切于點(diǎn),試判斷直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a11,a2an1anan10 (n≥2,且nN*),若數(shù)列{an1λan}是等比數(shù)列.

(1)求實(shí)數(shù)λ;

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)設(shè),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形, 交于點(diǎn) 底面,點(diǎn)中點(diǎn), .

(1)求直線所成角的余弦值;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案