【題目】已知函數(shù)在定義域內有兩個不同的極值點.

1)求的取值范圍;

2)設兩個極值點分別為:,證:.

【答案】1.2)見解析

【解析】

1)由題得,令,則函數(shù)在定義域內有兩個不同的極值點等價于在區(qū)間內至少有兩個不同的零點,再利用導數(shù)得到,解不等式即得解;

(2)分析得到要證:,只需證明,即證,不妨設,即證,構造函數(shù)構造函數(shù),其中,證明即得證.

1)由題意可知,的定義域為

,

,

則函數(shù)在定義域內有兩個不同的極值點等價于在區(qū)間內至少有兩個不同的零點.

可知,

時,恒成立,即函數(shù)上單調,不符合題意,舍去.

時,由得,,即函數(shù)在區(qū)間上單調遞增;

得,,即函數(shù)在區(qū)間上單調遞減;

故要滿足題意,必有,解得.

2)證明:由(1)可知,,

故要證

只需證明,

即證,不妨設,即證,

構造函數(shù),其中,

所以函數(shù)在區(qū)間內單調遞減,所以得證.

即證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】流行病學資料顯示,歲以上男性靜息心率過高將會增加患心血管疾病的風險,相反,靜息心率相對穩(wěn)定的歲的男性,在未來年內患心血管疾病的幾率會降低.研究員們還表示,其中靜息心率超過(次/分)的人比靜息心率低于的人罹患心血管疾病的風險高出一倍.某單位對其所有的離、退休老人進行了靜息心率監(jiān)測,其中一次靜息心率的莖葉圖和頻率分布直方圖如下,其中,頻率分布直方圖的分組區(qū)間分別為、、、、,由于掃描失誤,導致部分數(shù)據(jù)丟失.據(jù)此解答如下問題:

1)求此單位離、退休人員總數(shù)和靜息心率在之間的頻率;

2)現(xiàn)從靜息心率在之間的數(shù)據(jù)中任取份分析離、退休人員身體情況,設抽取的靜息心率在的份數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列是等比數(shù)列,公比大于0,前項和,是等差數(shù)列,已知,,

(Ⅰ)求數(shù)列,的通項公式;

(Ⅱ)設的前項和為

(。┣;

(ⅱ)若,記,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在橢圓 上, 是橢圓的一個焦點.

)求橢圓的方程;

)橢圓C上不與點重合的兩點, 關于原點O對稱,直線 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構調查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結論:

樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;

如果規(guī)定年收入在500萬元以內的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

樣本的中位數(shù)為480萬元.

其中正確結論的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調區(qū)間;

2)證明:(i

ii)對任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《普通高中數(shù)學課程標準(2017版)》提出了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)

C.乙的六大素養(yǎng)中邏輯推理最差

D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線l過拋物線的焦點F且交拋物線于A,B兩點,直線l與圓交于C,D兩點,若,設直線l的斜率為k,則________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐PABC中,平面PBC⊥平面ABC,∠ACB90°BCPC2,若ACPB,則三棱錐PABC體積的最大值為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案