【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對(duì)部分企業(yè)的稅收進(jìn)行適當(dāng)?shù)臏p免,某機(jī)構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個(gè)結(jié)論:
①樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計(jì)有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬元.
其中正確結(jié)論的個(gè)數(shù)為( )
A.0B.1C.2D.3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為,,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.
(1)求橢圓E的標(biāo)準(zhǔn)方程,
(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在某市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查,并從參與調(diào)查的市民中隨機(jī)抽取了男、女各100人進(jìn)行分析,得到如下所示的統(tǒng)計(jì)表.
經(jīng)常網(wǎng)購 | 偶爾網(wǎng)購或不網(wǎng)購 | 合計(jì) | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計(jì) |
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為該市市民的網(wǎng)購情況與性別無關(guān).
(2)①現(xiàn)從所抽取的100位女性市民中利用分層抽樣的方法抽取10人,再從這10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從該市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為X,求隨機(jī)變量X的數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,若△ABC的周長(zhǎng)為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
【答案】B
【解析】
根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進(jìn)而根據(jù)△ABC的周長(zhǎng),聯(lián)立方程組,可求出a的值.
根據(jù)正弦定理,可化為
∵△ABC的周長(zhǎng)為,
∴聯(lián)立方程組,
解得a=2.
故選:B
【點(diǎn)睛】
(1)在三角形中根據(jù)已知條件求未知的邊或角時(shí),要靈活選擇正弦、余弦定理進(jìn)行邊角之間的轉(zhuǎn)化,以達(dá)到求解的目的.
(2)求角的大小時(shí),在得到角的某一個(gè)三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點(diǎn)容易被忽視,解題時(shí)要注意.
【題型】單選題
【結(jié)束】
7
【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)說,年過半百的笛卡爾擔(dān)任瑞典一小公國(guó)的公主克里斯蒂娜的數(shù)學(xué)老師,日久生情,彼此愛慕,其父國(guó)王知情后大怒,將笛卡爾流放回法國(guó),并軟禁公主,笛卡爾回法國(guó)后染上黑死病,連連給公主寫信,死前最后一封信只有一個(gè)公式:國(guó)王不懂,將這封信交給了公主,公主用笛卡爾教她的坐標(biāo)知識(shí),畫出了這個(gè)圖形“心形線”.明白了笛卡爾的心意,登上了國(guó)王寶座后,派人去尋笛卡爾,其逝久矣(僅是一個(gè)傳說).心形線是由一個(gè)圓上的一個(gè)定點(diǎn),當(dāng)該圓繞著與其相切且半徑相同的另外一個(gè)圓周上滾動(dòng)時(shí),這個(gè)定點(diǎn)的軌跡,因其形狀像心形而得名.在極坐標(biāo)系中,方程表示的曲線就是一條心形線,如圖,以極軸所在直線為軸,極點(diǎn)為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的極坐標(biāo)方程;
(2)若曲線與相交于、、三點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:不等式選講
已知函數(shù)f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于,兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com