【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問(wèn)題時(shí)得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱(chēng)為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因?yàn)檎呛髢晌粩?shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc(即)時(shí)等號(hào)成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時(shí)x的值分別為( 。
A.B.C.D.
【答案】A
【解析】
將代入二維形式的柯西不等式的公式中,進(jìn)行化簡(jiǎn)即可得到答案。
由柯西不等式可知:
所以,當(dāng)且僅當(dāng)即x=時(shí)取等號(hào),
故函數(shù)的最大值及取得最大值時(shí)的值分別為,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線(xiàn)段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)一個(gè)袋子里有紅、黃、藍(lán)色小球各一個(gè)現(xiàn)每次從袋子里取出一個(gè)球(取出某色球的概率均相同),確定顏色后放回,直到連續(xù)兩次均取出紅色球時(shí)為止,記此時(shí)取出球的次數(shù)為ξ,則ξ的數(shù)學(xué)期望為_____ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,青蒿素作為一線(xiàn)抗瘧藥品得到大力推廣某農(nóng)科所為了深入研究海拔因素對(duì)青蒿素產(chǎn)量的影響,在山上和山下的試驗(yàn)田中分別種植了株青蒿進(jìn)行對(duì)比試驗(yàn).現(xiàn)在從山上和山下的試驗(yàn)田中各隨機(jī)選取了株青蒿作為樣本,每株提取的青蒿素產(chǎn)量(單位:克)如下表所示:
編號(hào)位置 | ① | ② | ③ | ④ |
山上 | ||||
山下 |
(1)根據(jù)樣本數(shù)據(jù),試估計(jì)山下試驗(yàn)田青蒿素的總產(chǎn)量;
(2)記山上與山下兩塊試驗(yàn)田單株青蒿素產(chǎn)量的方差分別為,,根據(jù)樣本數(shù)據(jù),試估計(jì)與的大小關(guān)系(只需寫(xiě)出結(jié)論);
(3)從樣本中的山上與山下青蒿中各隨機(jī)選取株,記這株的產(chǎn)量總和為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AB∥CD,AB⊥AD,PA⊥平面ABCD,E是棱PC上一點(diǎn).
(1)證明:平面ADE⊥平面PAB.
(2)若PE=4EC,O為點(diǎn)E在平面PAB上的投影,,AB=AP=2CD=2,求四棱錐P-ADEO的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)將曲線(xiàn)的參數(shù)方程化為極坐標(biāo)方程;
(2)設(shè)直線(xiàn)的參數(shù)方程為(其中為參數(shù)),若與曲線(xiàn)相交于、兩點(diǎn),且,求直線(xiàn)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,其圖象關(guān)于直線(xiàn)對(duì)稱(chēng).給出下面四個(gè)結(jié)論:①將的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng);②點(diǎn)為圖象的一個(gè)對(duì)稱(chēng)中心;③;④在區(qū)間上單調(diào)遞增.其中正確的結(jié)論為( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式,此事引起了國(guó)際數(shù)學(xué)界的轟動(dòng)許多專(zhuān)家認(rèn)為這是數(shù)論研究中的一項(xiàng)重大突破世界主流媒體都對(duì)這項(xiàng)重要成果作了報(bào)道并給予了高度評(píng)價(jià),印度媒體甚至稱(chēng)贊張益唐為“中國(guó)的拉馬努金”.孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問(wèn)題之一,可以這樣描述:存在無(wú)窮多個(gè)素?cái)?shù),使得是素?cái)?shù),素?cái)?shù)對(duì)稱(chēng)為孿生素?cái)?shù).在不超過(guò)20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com