【題目】2019年世界海洋日暨全國(guó)海洋宣傳日主場(chǎng)活動(dòng)在海南三亞舉行,此次活動(dòng)主題為“珍惜海洋資源保護(hù)海洋生物多樣性”,旨在進(jìn)一步提高公眾對(duì)節(jié)約利用海洋資源、保護(hù)海洋生物多樣性的認(rèn)識(shí),為保護(hù)藍(lán)色家園做出貢獻(xiàn).聯(lián)合國(guó)于第63屆聯(lián)合國(guó)大會(huì)上將每年的68日確定為“世界海洋日”,為了響應(yīng)世界海洋日的活動(dòng),201912月北京某高校行政主管部門從該大學(xué)隨機(jī)抽取部分大學(xué)生進(jìn)行一次海洋知識(shí)測(cè)試,并根據(jù)被測(cè)驗(yàn)學(xué)生的成績(jī)(得分都在區(qū)間內(nèi))繪制成如圖所示的頻率分布直方圖.

1)試求被測(cè)驗(yàn)大學(xué)生得分的中位數(shù)(保留到整數(shù));

2)若學(xué)生的得分成績(jī)不低于80分的認(rèn)為是“成績(jī)優(yōu)秀”,現(xiàn)在從認(rèn)為“成績(jī)優(yōu)秀”的學(xué)生中根據(jù)原有分組按照分層抽樣的方法抽取10人進(jìn)行獎(jiǎng)勵(lì),最后再?gòu)倪@10人中隨機(jī)選取3人作為優(yōu)秀代表發(fā)言.

①求所抽取的3人不屬于同一組的概率;

②記這3人中,為測(cè)試成績(jī)?cè)?/span>內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望.

【答案】12)①②見(jiàn)解析,1.2

【解析】

1)根據(jù)中位數(shù)求法,從第一組開(kāi)始,求得頻率和為0.5時(shí)對(duì)應(yīng)底邊的值即可.

2)①按照分層抽樣的特征,可分別求得兩組各抽取的人數(shù),求得10人中任選3人的所有情況,再求得抽取的3人不屬于同一組的所有情況即可求解;② 的取值可能有0,1,2,3,分別求得各自對(duì)應(yīng)的概率,即可得其分布列,進(jìn)而由數(shù)學(xué)期望的公式求解.

1)由頻率分步直方圖可知,

第一組的頻率為0.08,第二組的頻率為0.16,第三組的頻率為0.36,

由于,而,

∴這組數(shù)據(jù)的中位數(shù)在第三組,即.

∴被測(cè)驗(yàn)大學(xué)生得分的中位數(shù)約為77分;

2)認(rèn)為成績(jī)優(yōu)秀的被測(cè)驗(yàn)學(xué)生共有兩組,其頻率分布為0.24,0.16,

根據(jù)分層抽樣的方法可知,兩組抽取的人數(shù)分別為6人、4.

①?gòu)?/span>10人中任選3人,有種不同情況,抽取的3人不屬于同一組的情況有,

故所抽取的3人不屬于同一組的概率為;

②由條件可得的取值可能有0,1,2,3,且,,

,

的分布列為

0

1

2

3

的數(shù)學(xué)期望為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.

(Ⅰ)求袋中原有白球的個(gè)數(shù):

(Ⅱ)求取球次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)),

(Ⅰ)求函數(shù)的極值;

(Ⅱ)設(shè),若滿足,試判斷方程的實(shí)數(shù)根個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)當(dāng)時(shí),求證:時(shí),;

(Ⅱ)當(dāng)時(shí),計(jì)論函數(shù)的極值點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:函數(shù)的圖像恒過(guò)定點(diǎn);命題:若函數(shù)為偶函數(shù),則函數(shù)的圖象關(guān)于直線對(duì)稱,則下列命題為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)劃在某水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過(guò)去50年的水文資料顯示,水庫(kù)年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過(guò)120的年份有35年,超過(guò)120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.

(1)求未來(lái)4年中,至多1年的年入流量超過(guò)120的概率;

(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電量最多可運(yùn)行臺(tái)數(shù)

1

2

3

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)試判斷函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某苗圃基地的柏樹(shù)幼苗生長(zhǎng)情況,在這些樹(shù)苗中隨機(jī)抽取了120株測(cè)量高度(單位:cm),經(jīng)統(tǒng)計(jì),樹(shù)苗的高度均在區(qū)間內(nèi),將其按,,,, 分成6組,制成如圖所示的頻率分布直方圖.據(jù)當(dāng)?shù)匕貥?shù)苗生長(zhǎng)規(guī)律,高度不低于27cm的為優(yōu)質(zhì)樹(shù)苗.

1)求圖中的值;

2)用樣本估計(jì)總體,頻率代替概率,若從這批樹(shù)苗中隨機(jī)抽取4株,其中優(yōu)質(zhì)樹(shù)苗的株數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中表述恰當(dāng)?shù)氖牵?/span>

A.用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,值越接近于0,說(shuō)明模型的擬合效果越好

B.已知變量之間的線性回歸方程為,則相關(guān)系數(shù)

C.開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)是首末兩項(xiàng)

D.離散型隨機(jī)變量的各個(gè)可能值表示的事件是彼此互斥的

查看答案和解析>>

同步練習(xí)冊(cè)答案