【題目】計(jì)劃在某水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過(guò)去50年的水文資料顯示,水庫(kù)年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過(guò)120的年份有35年,超過(guò)120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.

(1)求未來(lái)4年中,至多1年的年入流量超過(guò)120的概率;

(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電量最多可運(yùn)行臺(tái)數(shù)

1

2

3

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損800萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?

【答案】(1)0.9477;(2)8620, 2.

【解析】

試題(1)先求,,再利用二項(xiàng)分布求解;(2)記水電站年總利潤(rùn)為(單位:萬(wàn)元)安裝1臺(tái)發(fā)電機(jī)的情形.安裝2臺(tái)發(fā)電機(jī).安裝3臺(tái)發(fā)電機(jī),分別求出,比較大小,再確定應(yīng)安裝發(fā)電機(jī)臺(tái)數(shù).

(1)依題意,

,,

由二項(xiàng)分布,在未來(lái)4年中至多有1年入流量找過(guò)120的概率為:

.

(2)記水電站年總利潤(rùn)為(單位:萬(wàn)元)

安裝1臺(tái)發(fā)電機(jī)的情形.

由于水庫(kù)年入流量總大于40,所以一臺(tái)發(fā)電機(jī)運(yùn)行的概率為1,

對(duì)應(yīng)的年利潤(rùn),.

安裝2臺(tái)發(fā)電機(jī).

當(dāng)時(shí),一臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),

因此,

當(dāng)時(shí),兩臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),

因此.由此得的分布列如下:

4200

10000

0.2

0.8

所以.

安裝3臺(tái)發(fā)電機(jī).

依題意,當(dāng)時(shí),一臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),

因此;

當(dāng)時(shí),兩臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),

此時(shí)

當(dāng)時(shí),三臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),

因此

由此得的分布列如下:

34

9200

15000

0.2

0.8

0.1

所以.

綜上,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)2臺(tái).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x).

1)求f(2)f()f(3)f()的值;

2)求證:f(x)f()是定值;

3)求f(2)f()f(3)f()f(2012)f()的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高考復(fù)習(xí)經(jīng)過(guò)二輪“見(jiàn)多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如下數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);

(2)若用表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問(wèn)這個(gè)班的強(qiáng)化訓(xùn)練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

, ,

樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l過(guò)點(diǎn)P(1,0,1),平行于向量,平面過(guò)直線l與點(diǎn)M(1,2,3),則平面的法向量不可能是( )

A. (1,4,2)B. C. D. (0,1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,若對(duì)于任意實(shí)數(shù)對(duì),存在,使成立,則稱(chēng)集合垂直對(duì)點(diǎn)集;下列四個(gè)集合中,是垂直對(duì)點(diǎn)集的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知sinC+cosC=1﹣sin,

(1)求sinC的值;

(2)若△ABC的外接圓面積為(4+)π,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有兩個(gè)不相等的正零點(diǎn),求的取值范圍;

(2)若函數(shù)上的最小值為-3,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線與拋物線交于,兩點(diǎn),與橢圓交于兩點(diǎn),直線,,為坐標(biāo)原點(diǎn))的斜率分別為,,,,若.

(1)是否存在實(shí)數(shù),滿足,并說(shuō)明理由;

(2)求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案