精英家教網 > 高中數學 > 題目詳情

【題目】、滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數的值為__________

【答案】

【解析】

由題意作出已知條件的平面區(qū)域,將化為為直線軸上的截距,然后對直線與三條邊界直線的斜率分別相等進行分類討論,利用數形結合思想可求得實數的值.

作出不等式組所表示的可行域如下圖所示:

化為為直線軸上的截距.

①當直線與直線的斜率相等時,即當時,

平移直線,可知當直線與直線重合時,直線軸上的截距最大,合乎題意;

②當直線與直線的斜率相等時,即當時,

平移直線,可知當直線過點時,直線軸上的截距最大,不合乎題意;

③當直線與直線的斜率相等時,即當時,

平移直線,可知當直線與直線重合時,直線軸上的截距最大,合乎題意.

綜上所述,.

故答案為:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數處取得極值.

(1)當時,求曲線處的切線方程;

(2)若函數有三個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)在中,內角A,B,C的對邊分別為ab,c,R表示的外接圓半徑.

①如圖,在以O圓心、半徑為2的圓O中,是圓O的弦,其中,,求弦的長;

②在中,若是鈍角,求證:

2)給定三個正實數a、b、R,其中,問:a、b、R滿足怎樣的關系時,以ab為邊長,R為外接圓半徑的不存在、存在一個或存在兩個(全等的三角形算作同一個)?在存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面直角坐標系,以為極點,軸的非負半軸為極軸建立極坐標系,直線過點P(-1,2),且傾斜角為,圓的極坐標方程為

(Ⅰ)求圓的普通方程和直線的參數方程;

(Ⅱ)設直線與圓交于M、N兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若有且僅有兩個整數,使得,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, ,其中a>1.

I)求函數的單調區(qū)間;

II)若曲線在點處的切線與曲線在點 處的切線平行,證明;

III)證明當,存在直線l,使l是曲線的切線也是曲線的切線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線的焦點為,過點的直線交拋物線于,兩點.

(1)為坐標原點,求證:;

(2)設點在線段上運動,原點關于點的對稱點為,求四邊形面積的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求函數在點處的切線方程;

2)若函數有兩個不同極值點,求實數的取值范圍;

3)當時,求證:對任意,恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產的10件產品中,有8件合格品、2件不合格品,合格品與不合格品在外觀上沒有區(qū)別.從這10件產品中任意抽檢2件,計算:

1)抽出的2件產品恰好都是合格品的抽法有多少種?

2)抽出的2件產品至多有1件不合格品的抽法有多少種?

3)如果抽檢的2件產品都是不合格品,那么這批產品將被退貨,求這批產品被退貨的概率.

查看答案和解析>>

同步練習冊答案