【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項惠民工程,持有旅游年卡一年內可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費支出情況單位:百元,相關部門對已游覽某簽約景區(qū)的游客進行隨機問卷調查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:

組別

頻數(shù)

10

390

400

188

12

求所得樣本的中位數(shù)精確到百元;

根據(jù)樣本數(shù)據(jù),可近似地認為市民的旅游費用支出服從正態(tài)分布,若該市總人口為750萬人,試估計有多少市民每年旅游費用支出在7500元以上;

若年旅游消費支出在百元以上的游客一年內會繼續(xù)來該景點游玩現(xiàn)從游客中隨機抽取3人,一年內繼續(xù)來該景點游玩記2分,不來該景點游玩記1分,將上述調查所得的頻率視為概率,且游客之間的選擇意愿相互獨立,記總得分為隨機變量X,求X的分布列與數(shù)學期望.

參考數(shù)據(jù):;

【答案】百元;萬;分布列見解析,

【解析】

設樣本的中位數(shù)為x,可得,解得x

,,,旅游費用支出在7500元以上的概率為,即可估計有多少萬市民旅游費用支出在7500元以上;

由表格知一年內游客繼續(xù)來該景點游玩的概率為X可能取值為3,4,56,利用二項分布列即可得出.

解:設樣本的中位數(shù)為x,則,

解得,所得樣本中位數(shù)為百元;

,,,

旅游費用支出在7500元以上的概率為,,估計有萬市民旅游費用支出在7500元以上;

由表格知一年內游客繼續(xù)來該景點游玩的概率為X可能取值為3,45,6

,,,

故其分布列為:

X

3

4

5

6

P

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項,對任意的,都有,數(shù)列是公比不為的等比數(shù)列.

1)求實數(shù)的值;

2)設數(shù)列的前項和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:直線關于圓的圓心距單位圓心到直線的距離與圓的半徑之比.

1)設圓,求過點的直線關于圓的圓心距單位的直線方程.

2)若圓軸相切于點,且直線關于圓的圓心距單位,求此圓的方程.

3)是否存在點,使過點的任意兩條互相垂直的直線分別關于相應兩圓的圓心距單位始終相等?若存在,求出相應的點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合由滿足下列兩個條件的數(shù)列構成:①②存在實數(shù)使對任意正整數(shù)都成立.

1)現(xiàn)在給出只有5項的有限數(shù)列其中;試判斷數(shù)列是否為集合的元素;

2)數(shù)列的前項和為且對任意正整數(shù)在直線上,證明:數(shù)列并寫出實數(shù)的取值范圍;

3)設數(shù)列且對滿足條件②中的實數(shù)的最小值都有求證:數(shù)列一定是單調遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標系中,將曲線上的點按坐標變換得到曲線,以原點為極點,軸的正半軸為極軸,建立極坐標系.點的極坐標為.

1)求曲線的極坐標方程;

2)若過點且傾斜角為的直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形為矩形, ,的中點,沿折起,得到四棱錐,的中點為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值;

三棱錐的最大體積為;

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

1)求處的切線方程以及的單調性;

2)對,有恒成立,求的最大整數(shù)解;

3)令,若有兩個零點分別為,的唯一的極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“劍橋學派”創(chuàng)始人之一數(shù)學家哈代說過:“數(shù)學家的造型,同畫家和詩人一樣,也應當是美麗的”;古希臘數(shù)學家畢達哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點,曲線的參數(shù)方程為 (為參數(shù)).

(Ⅰ)求曲線上的點到直線的距離的最大值;

(Ⅱ)過點與直線平行的直線與曲線 交于兩點,求的值.

查看答案和解析>>

同步練習冊答案