【題目】已知數(shù)列的首項(xiàng),對(duì)任意的,都有,數(shù)列是公比不為的等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)設(shè)數(shù)列的前項(xiàng)和為,求所有正整數(shù)的值,使得恰好為數(shù)列中的項(xiàng).
【答案】(1);(2).
【解析】
(1)根據(jù)遞推公式求出、,由題意得出,求出的值,結(jié)合數(shù)列公比不為的等比數(shù)列進(jìn)行檢驗(yàn),進(jìn)而得出實(shí)數(shù)的值;
(2)求出利用奇偶分組法求出、,設(shè),可得知,從而可知、或為偶數(shù),由結(jié)合可推出不成立,然后分和為偶數(shù)兩種情況討論,結(jié)合的取值范圍可求出符合條件的正整數(shù)的值.
(1)由,可知,,,
因?yàn)?/span>為等比數(shù)列,所以,
即,即,解得或,
當(dāng)時(shí),,所以,則,
所以數(shù)列的公比為1,不符合題意;
當(dāng)時(shí),,所以數(shù)列的公比,
所以實(shí)數(shù)的值為.
(2)由(1)知,所以
則
,
則,
因?yàn)?/span>,又,
且,,所以,則,設(shè),
則或為偶數(shù),因?yàn)?/span>不可能,所以或為偶數(shù),
①當(dāng)時(shí),,化簡(jiǎn)得,
即,所以可取值為1,2,3,
驗(yàn)證,,得,當(dāng)時(shí),成立.
②當(dāng)為偶數(shù)時(shí),,
設(shè),則,
由①知,當(dāng)時(shí),;
當(dāng)時(shí),,所以,所以的最小值為,
所以,令,則,
即,無(wú)整數(shù)解.
綜上,正整數(shù)的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為檢查某工廠所生產(chǎn)的8萬(wàn)臺(tái)電風(fēng)扇的質(zhì)量,抽查了其中20臺(tái)的無(wú)故障連續(xù)使用時(shí)限(單位:小時(shí)) 如下:
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
總計(jì) | 0.05 |
(1)完成頻率分布表,并作出頻率分布直方圖;
(2)估計(jì)8萬(wàn)臺(tái)電風(fēng)扇中有多少臺(tái)無(wú)故障連續(xù)使用時(shí)限不低于280小時(shí);
(3)用組中值(同一組中的數(shù)據(jù)在該組區(qū)間的中點(diǎn)值)估計(jì)樣本的平均無(wú)故障連續(xù)使用時(shí)限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為常數(shù),且.
(1)證明函數(shù)的圖象關(guān)于直線對(duì)稱;
(2)當(dāng)時(shí),討論方程解的個(gè)數(shù);
(3)若滿足,但,則稱為函數(shù)的二階周期點(diǎn),則是否有兩個(gè)二階周期點(diǎn),說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,,過(guò)點(diǎn)的直線與橢圓相交于點(diǎn)A,B兩點(diǎn),且
(1)若,求橢圓的方程;
(2)直線AB的斜率;
(3)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線上有一點(diǎn)在的外接圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有、兩個(gè)自習(xí)教室,甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個(gè)教室自習(xí),則甲、乙兩人不在同一教室上自習(xí)的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種零件的質(zhì)量指標(biāo)值為整數(shù),指標(biāo)值為8時(shí)稱為合格品,指標(biāo)值為7或者9時(shí)稱為準(zhǔn)合格品,指標(biāo)值為6或10時(shí)稱為廢品,某單位擁有一臺(tái)制造該零件的機(jī)器,為了了解機(jī)器性能,隨機(jī)抽取了該機(jī)器制造的100個(gè)零件,不同的質(zhì)量指標(biāo)值對(duì)應(yīng)的零件個(gè)數(shù)如下表所示;
質(zhì)量指標(biāo)值 | 6 | 7 | 8 | 9 | 10 |
零件個(gè)數(shù) | 6 | 18 | 60 | 12 | 4 |
使用該機(jī)器制造的一個(gè)零件成本為5元,合格品可以以每個(gè)元的價(jià)格出售給批發(fā)商,準(zhǔn)合格品與廢品無(wú)法岀售.
(1)估計(jì)該機(jī)器制造零件的質(zhì)量指標(biāo)值的平均數(shù);
(2)若該單位接到一張訂單,需要該零件2100個(gè),為使此次交易獲利達(dá)到1400元,估計(jì)的最小值;
(3)該單位引進(jìn)了一臺(tái)加工設(shè)備,每個(gè)零件花費(fèi)2元可以被加工一次,加工結(jié)果會(huì)等可能出現(xiàn)以下三種情況:①質(zhì)量指標(biāo)值增加1,②質(zhì)量指標(biāo)值不變,③質(zhì)量指標(biāo)值減少1.已知每個(gè)零件最多可被加工一次,且該單位計(jì)劃將所有準(zhǔn)合格品逐一加工,在(2)的條件下,估計(jì)的最小值(精確到0.01) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè).
(1)當(dāng)時(shí),f(x)的最小值是_____;
(2)若f(0)是f(x)的最小值,則a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);
(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項(xiàng)惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費(fèi)支出情況單位:百元,相關(guān)部門(mén)對(duì)已游覽某簽約景區(qū)的游客進(jìn)行隨機(jī)問(wèn)卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) | 10 | 390 | 400 | 188 | 12 |
求所得樣本的中位數(shù)精確到百元;
根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為市民的旅游費(fèi)用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬(wàn)人,試估計(jì)有多少市民每年旅游費(fèi)用支出在7500元以上;
若年旅游消費(fèi)支出在百元以上的游客一年內(nèi)會(huì)繼續(xù)來(lái)該景點(diǎn)游玩現(xiàn)從游客中隨機(jī)抽取3人,一年內(nèi)繼續(xù)來(lái)該景點(diǎn)游玩記2分,不來(lái)該景點(diǎn)游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨(dú)立,記總得分為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
參考數(shù)據(jù):,;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com