【題目】已知四邊形為矩形, ,為的中點(diǎn),將沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個(gè)命題:
①平面,且的長(zhǎng)度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個(gè)位置,使得.
其中正確命題的序號(hào)為__________.(寫出所有正確結(jié)論的序號(hào))
【答案】①②
【解析】
取的中點(diǎn),連接、,證明四邊形為平行四邊形,得出,可判斷出命題①的正誤;由為的中點(diǎn),可知三棱錐的體積為三棱錐
的一半,并由平面平面,得出三棱錐體積的最大值,可判斷出命題②的正誤;取的中點(diǎn),連接,由,結(jié)合得出平面,推出得出矛盾,可判斷出命題③的正誤.
如下圖所示:
對(duì)于命題①,取的中點(diǎn),連接、,則,,
,由勾股定理得,
易知,且,、分別為、的中點(diǎn),所以,,
四邊形為平行四邊形,,,
平面,平面,平面,命題①正確;
對(duì)于命題②,由為的中點(diǎn),可知三棱錐的體積為三棱錐的一半,當(dāng)平面平面時(shí),三棱錐體積取最大值,
取的中點(diǎn),則,且,
平面平面,平面平面,,
平面,平面,
的面積為,
所以,三棱錐的體積的最大值為,
則三棱錐的體積的最大值為,命題②正確;
對(duì)于命題③,,為的中點(diǎn),所以,,
若,且,平面,
由于平面,,事實(shí)上,易得,,
,由勾股定理可得,這與矛盾,命題③錯(cuò)誤.
故答案為:①②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,P是曲線上的動(dòng)點(diǎn),M為線段OP的中點(diǎn),設(shè)點(diǎn)M的軌跡為曲線.
(1)求的極坐標(biāo)方程;
(2)若射線與曲線異于極點(diǎn)的交點(diǎn)為A,與曲線異于極點(diǎn)的交點(diǎn)為B,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意的,都有成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,,為的中點(diǎn),平面且,為的中點(diǎn).
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | |||||||
頻數(shù) | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | ||||||
頻數(shù) | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:
(2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;
(3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠在某年連續(xù)10個(gè)月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;
②通過建立的y關(guān)于x的回歸方程,估計(jì)某月產(chǎn)量為1.98萬件時(shí),此時(shí)產(chǎn)品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商品價(jià)格與商品需求量是經(jīng)濟(jì)學(xué)中的一種基本關(guān)系,某服裝公司需對(duì)新上市的一款服裝制定合理的價(jià)格,需要了解服裝的單價(jià)x(單位:元)與月銷量y(單位:件)和月利潤(rùn)z(單位:元)的影響,對(duì)試銷10個(gè)月的價(jià)格和月銷售量()數(shù)據(jù)作了初步處理,得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
x | y | |||||
61 | 0.018 | 372 | 2670 | 26 | 0.0004 |
表中.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為需求量y關(guān)于價(jià)格x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這批服裝的成本為每件10元,根據(jù)(1)的結(jié)果回答下列問題;
(i)預(yù)測(cè)當(dāng)服裝價(jià)格時(shí),月銷售量的預(yù)報(bào)值是多少?
(span>ii)當(dāng)服裝價(jià)格x為何值時(shí),月利潤(rùn)的預(yù)報(bào)值最大?(參考數(shù)據(jù))
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為的正三角形,,且,分別是,中點(diǎn),則異面直線與所成角的余弦值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com