【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,,M是線段EF的中點,二面角的大小為60°.

1)求證:平面BDE;

2)試在線段AC上找一點P,使得PFCD所成的角是60°.

【答案】1)證明見解析;(2PAC的中點

【解析】

(1)要證平面,直線證明直線平行平面內的直線即可;
(2) 軸,建立如圖所示的空間直角坐標系,設出線段點的坐標,由所成的角是60°,得到向量夾角的余弦值為 , 由此可求得點的坐標

1)證明:設,連接NE

,M是線段EF的中點,N是線段AC的中點,

,

四邊形AMEN為平行四邊形,

,

平面BDE,平面BDE,

平面BDE.

2)如圖,以軸,建立如圖所示的空間直角坐標系,

,

,,

,,

,

平面ADF,

為平面DAF的法向量,

設平面BDF的法向量為,

,即

,則平面BDF的一個法向量為

設二面角的大小為θ

,

解得,

,,

,解得(舍去),

所以當點P為線段AC的中點時,直線PFCD所成的角為60°.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱柱中,側棱底面,,,為棱的中點.

1)證明:;

2)求二面角的正弦值;

3)設點在線段上,且直線與平面所成角的正弦值是,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三角形的邊長為、分別為各邊的中點,將沿、、折疊,使、、三點重合,構成三棱錐

(1)求平面與底面所成二面角的余弦值;

(2)設點分別在、上, (為變量) ;

①當為何值時,為異面直線的公垂線段? 請證明你的結論

②設異面直線所成的角為,異面直線所成的角為,試求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代著名的周髀算經中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個節(jié)氣,每相鄰兩個節(jié)氣之間的日影長度差為分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分則“立春”時日影長度為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,,點為左支上任意一點,直線是雙曲線的一條漸近線,點在直線上的射影為,且當取最小值5時,的最大值為( )

A. B. C. D. 10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C)的左、右焦點分別為,,離心率,點在橢圓C上,直線l交橢圓于AB兩點.

1)求橢圓C的標準方程;

2)當時,點Ax軸上方時,求點AB的坐標;

3)若直線y軸于點M,直線y軸于點N,是否存在直線l,使得的面積滿足,若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若存在正實數(shù)x,y使得x2+y2lny-lnx-axy=0aR)成立,則a的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了16月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

日期

110

210

310

410

510

610

晝夜溫差(℃)

10

11

13

12

8

6

就診人數(shù)(個)

22

25

29

26

16

12

1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)25月份的數(shù)據(jù),求出關于的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

(參考數(shù)據(jù),

(參考公式:

查看答案和解析>>

同步練習冊答案