【題目】隨著銀行業(yè)的不斷發(fā)展,市場競爭越來越激烈,顧客對銀行服務(wù)質(zhì)量的要求越來越高,銀行為了提高柜員,員工的服務(wù)意識,加強評價管理,工作中讓顧客對服務(wù)作出評價,評價分為滿意、基本滿意、不滿意三種,某銀行為了比較顧客對男女柜員員工滿意度評價的差異,在下屬的四個分行中隨機抽出40人(男女各半)進行分析比較對40人一月中的顧客評價“不滿意“的次數(shù)進行了統(tǒng)計,按男、女分為兩組,再將每組柜員員工的月“不滿意”次數(shù)分為5組:[0,5),[5,10),[10,15),[15,20),[20,25],得到如下頻數(shù)分布表.
分組 | [0,5) | [5,10) | [10,15) | [15,20) | [20,25] |
女柜員 | 2 | 3 | 8 | 5 | 2 |
男柜員 | 1 | 3 | 9 | 4 | 3 |
(1)在答題卡所給的坐標系中分別畫出男、女柜員員工的頻率分布直方圖;并求出男、女柜員的月平均“不滿意”次數(shù)的估計值,試根據(jù)估計值比較男、女柜員的滿意度誰高?
(2)在抽取的40名柜員員工中,從“不滿意”次數(shù)不少于20的柜員員工中隨機抽取3人,求抽取的3人中,男柜員不少于女柜員的概率.
【答案】(1)見解析,13;13.75;女柜員員工的滿意度要高.(2).
【解析】
(1)分別列出女柜員、男柜員的頻率分布表,再畫出女柜員、男柜員的頻率分布直方圖;計算女柜員、男柜員員工的月平均“不滿意”次數(shù),比較即可得出結(jié)論;(2)“不滿意”次數(shù)不少于20的柜員員工共有5人,其中女員工2人,男員工3人,從“不滿意”次數(shù)不少于20的柜員員工中隨機抽取3人,基本事件總數(shù),抽取的3人中,男柜員不少于女柜員包含的基本事件個數(shù),由此能求出抽取的3人中,男柜員不少于女柜員的概率.
(1)對于女柜員列出頻率分布表如下,
分組 | [0,5) | [5,10) | [10,15) | [15,20) | [20,25] |
女柜員 | 2 | 3 | 8 | 5 | 2 |
頻率 | 0.1 | 0.15 | 0.4 | 0.25 | .0.1 |
對于男柜員列出頻率分布表如下;
分組 | [0,5) | [5,10) | [10,15) | [15,20) | [20,25] |
男柜員 | 1 | 3 | 9 | 4 | 3 |
男柜員 | 0.05 | 0.15 | 0.45 | 0.2 | 0.15 |
分別畫出女柜員和男柜員的頻率分布直方圖,如圖所示;
設(shè)女柜員、男柜員員工的月平均“不滿意”次數(shù)分別為、,
則(2×2.5+3×7.5+8×12.5+5×17.5+2×22.5)260=13,
(1×2.5+3×7.5+9×12.5+4×17.5+3×22.5)275=13.75,
又,∴女柜員員工的滿意度要高.
(2)在抽取的40名柜員員工中,
“不滿意”次數(shù)不少于20的柜員員工共有5人,其中女員工2人,男員工3人,
從“不滿意”次數(shù)不少于20的柜員員工中隨機抽取3人,
基本事件總數(shù),
抽取的3人中,男柜員不少于女柜員包含的基本事件個數(shù):
m7,
∴抽取的3人中,男柜員不少于女柜員的概率p.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為調(diào)查高三學(xué)生英語聽力水平的情況,隨機抽取了高三年級的80名學(xué)生進行測試,根據(jù)測試結(jié)果繪制了英語聽力成績(滿分為30分)的頻率分布直方圖,將成績不低于27分的定為優(yōu)秀
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否有90%的把握認為英語聽力成績是否優(yōu)秀與性別有關(guān)?
英語聽力優(yōu)秀 | 非英語聽力優(yōu)秀 | 合計 | |
男同學(xué) | 10 | ||
女同學(xué) | 36 | ||
合計 |
(2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該校高三學(xué)生中,采取隨機抽樣方法每次抽取1名學(xué)生,共抽取3次,記被抽取的3名學(xué)生中“英語聽力優(yōu)秀”的人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列和數(shù)學(xué)期望E(X)
參考公式:,其中
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如下表:
作物產(chǎn)量() | 400 | 500 |
概率 |
作物市場價格(元/) | 5 | 6 |
概率 |
(1)設(shè)表示在這塊地上種植1季此作物的利潤,求的分布列(利潤產(chǎn)量市場價格成本);
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中的利潤都在區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex.
(1)若f(x)的圖象在x=a處切線的斜率為e﹣1,求正數(shù)a的值;
(2)對任意的a≥0,f(x)>2lnxk恒成立,求整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“x∈[﹣1,1],使等式m=x2﹣x成立”是真命題.
(1)求實數(shù)m的取值集合M;
(2)設(shè)不等式(x﹣a)[x﹣(2﹣a)]<0的解集為N,若NM,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時,f(x)=()1﹣x,則
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個對稱軸;
⑤當(dāng)x∈(3,4)時,f(x)=()x﹣3.
其中所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線經(jīng)過點,且與極軸所成的角為.
(1)求曲線的普通方程及直線的參數(shù)方程;
(2)設(shè)直線與曲線交于兩點,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱ABC﹣A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分別是AC,A1B1的中點.
(1)證明:EF⊥BC;
(2)求直線EF與平面A1BC所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com