【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為20人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺(jué)性一致),數(shù)學(xué)期終考試成績(jī)莖葉圖如下:
(1)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚?xiě)下面的聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
附:參考公式及數(shù)據(jù)
(2)從兩個(gè)班數(shù)學(xué)成績(jī)不低于90分的同學(xué)中隨機(jī)抽取3名,設(shè)為抽取成績(jī)不低于95分同學(xué)人數(shù),求的分布列和期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)2次,所獲得的返券金額是兩次金額之和.
(1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知內(nèi)角 ,邊 .設(shè)內(nèi)角B=x,△ABC的面積為y.
(1)求函數(shù)y=f(x)的解析式和定義域;
(2)當(dāng)角B為何值時(shí),△ABC的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)存在極小值點(diǎn),且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三次函數(shù)的導(dǎo)函數(shù)且, .
(1)求的極值;
(2)求證:對(duì)任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的半徑為,圓心在第一象限,且與直線和軸都相切.
(Ⅰ)求圓的方程.
(Ⅱ)過(guò)的直線與圓相交所得的弦長(zhǎng)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一緝私艇發(fā)現(xiàn)在方位角45°方向,距離12海里的海面上有一走私船正以10海里/小時(shí)的速度沿方位角為105°方向逃竄,若緝私艇的速度為14海里/小時(shí),緝私艇沿方位角45°+α的方向追去,若要在最短的時(shí)間內(nèi)追上該走私船,求追擊所需時(shí)間和α角的正弦.(注:方位角是指正北方向按順時(shí)針?lè)较蛐D(zhuǎn)形成的角,設(shè)緝私艇與走私船原來(lái)的位置分別為A、C,在B處兩船相遇).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是半圓的直徑, 是半圓上除、外的一個(gè)動(dòng)點(diǎn), 垂直于半圓所在的平面, , , , .
(1)證明:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面, ,、分別是棱、的中點(diǎn).
(Ⅰ)求證:平面.
(Ⅱ)若線段上的點(diǎn)滿足平面平面,試確定點(diǎn)的位置,并說(shuō)明理由.
(Ⅲ)證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com