【題目】某書(shū)店銷(xiāo)售剛剛上市的某高二數(shù)學(xué)單元測(cè)試卷,按事先擬定的價(jià)格進(jìn)行5天試銷(xiāo),每種單價(jià)試銷(xiāo)1天,得到如下數(shù)據(jù):

單價(jià)x/

18

19

20

21

22

銷(xiāo)量y/冊(cè)

61

56

50

48

45

1)求試銷(xiāo)天的銷(xiāo)量的方差和關(guān)于的回歸直線方程;

附: .

2)預(yù)計(jì)以后的銷(xiāo)售中,銷(xiāo)量與單價(jià)服從上題中的回歸直線方程,已知每?jī)?cè)單元測(cè)試卷的成本是10元,為了獲得最大利潤(rùn),該單元測(cè)試卷的單價(jià)應(yīng)定為多少元?

【答案】1)33.2,221.5

【解析】

1)根據(jù)公式計(jì)算可得結(jié)果;

2)獲得的利潤(rùn),再根據(jù)二次函數(shù)知識(shí)可求得結(jié)果.

解:(1)

,

關(guān)于的回歸直線方程為.

(2)獲得的利潤(rùn),即

二次函數(shù)的圖象開(kāi)口向下,

∴當(dāng)時(shí), 取最大值

∴當(dāng)單價(jià)定為元時(shí),可獲得最大利潤(rùn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為拋物線 的焦點(diǎn),點(diǎn)是準(zhǔn)線上的動(dòng)點(diǎn),直線交拋物線兩點(diǎn),若點(diǎn)的縱坐標(biāo)為,點(diǎn)為準(zhǔn)線軸的交點(diǎn).

(1)求直線的方程;

(2)求的面積范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓左右焦點(diǎn)為,左頂點(diǎn)為A(-2.0),上頂點(diǎn)為B,且∠=.

(1)求橢圓C的方程;

(2)探究軸上是否存在一定點(diǎn)P,過(guò)點(diǎn)P的任意直線與橢圓交于M、N不同的兩點(diǎn),M、N不與點(diǎn)A重合,使得 為定值,若存在,求出點(diǎn)P;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線 的焦點(diǎn),過(guò)點(diǎn)作兩條互相垂直的直線,直線于不同的兩點(diǎn),直線于不同的兩點(diǎn),記直線的斜率為.

(1)求的取值范圍;

(2)設(shè)線段的中點(diǎn)分別為點(diǎn),求證: 為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,橢圓關(guān)于坐標(biāo)軸對(duì)稱,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系, , 為橢圓上兩點(diǎn).

(1)求直線的直角坐標(biāo)方程與橢圓的參數(shù)方程;

(2)若點(diǎn)在橢圓上,且點(diǎn)在第一象限內(nèi),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式的解集為

(1)求的值;

(2)若不等式的解集為,不等式的解集為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若函數(shù)的定義域?yàn)?/span>,且存在非零常數(shù),對(duì)任意 , 恒成立,則稱為線周期函數(shù), 的線周期.

(1)下列函數(shù)①,②,③(其中表示不超過(guò)x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫(xiě)序號(hào));

(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);

(3)若為線周期函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)以線段為直徑的圓內(nèi)切于圓,記點(diǎn)的軌跡為.

1)求曲線的方程;

2)若為曲線上的兩點(diǎn),記, ,試問(wèn)的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,動(dòng)圓過(guò)點(diǎn)和點(diǎn).記兩個(gè)圓的交點(diǎn)為、

1)如果直線的方程為,求圓的方程;

2)當(dāng)動(dòng)圓的面積最小時(shí),求兩個(gè)圓心距離的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案