【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式b,c為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸xmm

38

48

58

68

78

88

質(zhì)量

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

1)現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,求選中的2件均為優(yōu)等品的概率;

2)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

根據(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程.

附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

【答案】1,(2

【解析】

1)由條件得出隨機(jī)抽取的6件合格產(chǎn)品中,有3件為優(yōu)等品,記為,有3件為非優(yōu)等品,記為,然后用列舉法求解即可.

2)對兩邊取自然對數(shù)得,令,,則,且,然后用所給數(shù)據(jù)和公式計算即可.

1)由已知,優(yōu)等品的質(zhì)量與尺寸的比在區(qū)間內(nèi),即

則隨機(jī)抽取的6件合格產(chǎn)品中,有3件為優(yōu)等品,記為,有3件為非優(yōu)等品,記為

現(xiàn)從抽取的6件合格產(chǎn)品中再任選2件,基本事件為:

選中的兩件均為優(yōu)等品的事件為

所以所求概率為

2)對兩邊取自然對數(shù)得

,,則,且

根據(jù)所給統(tǒng)計量及最小二乘估計公式有:

,由

所以y關(guān)于x的回歸方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時,周日測試

方式二:周六一天培訓(xùn)4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),且在點(diǎn)處的切線的斜率為,函數(shù).

1)求的單調(diào)區(qū)間和極值;

2)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:

若評分不低于80分,則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式“不認(rèn)可”.

(Ⅰ)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?

認(rèn)可

不認(rèn)可

合計

A城市

B城市

合計

(Ⅱ)在樣本A,B兩個城市對此教育機(jī)構(gòu)授課方式“認(rèn)可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數(shù)學(xué)競賽,求A城市中至少有1人參加的概率.

參考公式:,其中

參考數(shù)據(jù):

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】這三個條件中任選一個,補(bǔ)充在下面問題中,并給出解答.

設(shè)等差數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為________,,若對于任意都有,且(為常數(shù)),求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.

1)已知,證明:平面平面;

2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過拋物線的焦點(diǎn),且與該拋物線交于兩點(diǎn),若線段的長是16的中點(diǎn)到軸的距離是6,是坐標(biāo)原點(diǎn),則( ).

A.拋物線的方程是B.拋物線的準(zhǔn)線方程是

C.直線的方程是D.的面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定圓,動圓過點(diǎn),且和圓相切.

(Ⅰ)求動圓圓心的軌跡的方程;

(Ⅱ)若直線與軌跡交于,兩點(diǎn),線段的垂直平分線經(jīng)過點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖像與的圖像交于不同的兩點(diǎn)線段的中點(diǎn)為

1)求實(shí)數(shù)的取值范圍;

2)證明:

查看答案和解析>>

同步練習(xí)冊答案