【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試

方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試

公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來(lái)自甲組的概率.

【答案】(1)方式一(2

【解析】

(1)用總的受訓(xùn)時(shí)間除以,得到平均受訓(xùn)時(shí)間.由此判斷出方式一效率更高.(2)利用分層抽樣的知識(shí),計(jì)算得來(lái)自甲組人,乙組.再利用列舉法求得“從這人中隨機(jī)抽取人,求這人中至少有人來(lái)自甲組的概率”.

解:(1)設(shè)甲乙兩組員工受訓(xùn)的平均時(shí)間分別為,則

(小時(shí))

(小時(shí))

據(jù)此可估計(jì)用方式一與方式二培訓(xùn),員工受訓(xùn)的平均時(shí)間分別為10小時(shí)和10.9小時(shí),因,據(jù)此可判斷培訓(xùn)方式一比方式二效率更高;

(2)從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,

則這6人中來(lái)自甲組的人數(shù)為:,

來(lái)自乙組的人數(shù)為:

記來(lái)自甲組的2人為:;來(lái)自乙組的4人為:,則從這6人中隨機(jī)抽取

2人的不同方法數(shù)有:,,,,共15種,

其中至少有1人來(lái)自甲組的有:,

共9種,故所求的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)共有員工10000人,下圖是通過(guò)隨機(jī)抽樣得到的該企業(yè)部分員工年收入(單位:萬(wàn)元)頻率分布直方圖.

(1)根據(jù)頻率分布直方圖計(jì)算樣本的平均數(shù).并以此估算該企業(yè)全體員工中年收入不低于樣本平均數(shù)的人數(shù)(同一組中的數(shù)據(jù)以這數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);

(2)若抽樣調(diào)查中收入在萬(wàn)元員工有2人,求在收入在萬(wàn)元的員工中任取3人,恰有2位員工收入在萬(wàn)元的概率;

(3)若抽樣調(diào)查的樣本容量是400人,在這400人中:年收入在萬(wàn)元的員工中具有大學(xué)及大學(xué)以上學(xué)歷的有,年收入在萬(wàn)元的員工中不具有大學(xué)及大學(xué)以上學(xué)歷的有,將具有大學(xué)及大學(xué)以上學(xué)歷和不具有大學(xué)及大學(xué)以上學(xué)歷的員工人數(shù)填入下面的列聯(lián)表,并判斷能否有的把握認(rèn)為具有大學(xué)及大學(xué)以上學(xué)歷和不具有大學(xué)及大學(xué)以上學(xué)歷的員工收入有差異?

具有大學(xué)及大學(xué)以上學(xué)歷

不具有大學(xué)及大學(xué)以上學(xué)歷

合計(jì)

萬(wàn)元員工

萬(wàn)元員工

合計(jì)

附:;

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤(pán)游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè);每盤(pán)游戲擊鼓三次后,出現(xiàn)一次音樂(lè)獲得10分,出現(xiàn)兩次音樂(lè)獲得20分,出現(xiàn)三次音樂(lè)獲得100分,沒(méi)有出現(xiàn)音樂(lè)則扣除200(即獲得-200).設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓出現(xiàn)音樂(lè)相互獨(dú)立.

(1)設(shè)每盤(pán)游戲獲得的分?jǐn)?shù)為X,求X的分布列;

(2)玩三盤(pán)游戲,至少有一盤(pán)出現(xiàn)音樂(lè)的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)的極值點(diǎn);

(2)若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)若函數(shù)在區(qū)間上無(wú)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為A,下頂點(diǎn)為B,過(guò)A、O、BO為坐標(biāo)原點(diǎn))三點(diǎn)的圓的圓心坐標(biāo)為

(1)求橢圓的方程;

(2)已知點(diǎn)Mx軸正半軸上,過(guò)點(diǎn)BBM的垂線與橢圓交于另一點(diǎn)N,若∠BMN=60°,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京地鐵八通線西起四惠站,東至土橋站,全長(zhǎng)18.964km,共設(shè)13座車(chē)站.目前八通線執(zhí)行2014年12月28日制訂的計(jì)價(jià)標(biāo)準(zhǔn),各站間計(jì)程票價(jià)(單位:元)如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠東

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

3

3

4

4

4

4

5

5

p>5

傳媒大學(xué)

3

3

3

4

4

4

4

5

5

雙橋

3

3

3

4

4

4

4

4

管莊

3

3

3

3

4

4

4

八里橋

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果園

3

3

3

3

九棵樹(shù)

3

3

3

梨園

/p>

3

3

臨河里

3

土橋

四惠

四惠東

高碑店

傳媒大學(xué)

雙橋

管莊

八里橋

通州北苑

果園

九棵樹(shù)

梨園

臨河里

土橋

(Ⅰ)在13座車(chē)站中任選兩個(gè)不同的車(chē)站,求兩站間票價(jià)不足5元的概率;

(Ⅱ)甲乙二人從四惠站上車(chē)乘坐八通線,各自任選另一站下車(chē)(二人可同站下車(chē)),記甲乙二人乘車(chē)購(gòu)票花費(fèi)之和為X元,求X的分布列;

(Ⅲ)若甲乙二人只乘坐八通線,甲從四惠站上車(chē),任選另一站下車(chē),記票價(jià)為元;乙從土橋站上車(chē),任選另一站下車(chē),記票價(jià)為元.試比較的方差大。ńY(jié)論不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)試討論的單調(diào)性;

(Ⅱ)記的零點(diǎn)為,的極小值點(diǎn)為,當(dāng)時(shí),求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線的焦點(diǎn)且斜率為1的直線與拋物線交于、兩點(diǎn),且.

1)求拋物線的方程;

2)點(diǎn)是拋物線上異于的任意一點(diǎn),直線、與拋物線的準(zhǔn)線分別交于點(diǎn)、,求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案