【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的極值點;
(2)若,恒成立,求的取值范圍.
【答案】(1)當時,無極值點;當時,極值點為;當且時,極值點為和;(2).
【解析】
(1)先求出函數(shù)的導數(shù),討論、、且即可求出函數(shù)的極值點;
(2)由題意可將,恒成立轉(zhuǎn)化為時,恒成立,然后構(gòu)造函數(shù),分,與兩種情況討論,分別用導數(shù)的方法研究其在上的單調(diào)性和值域,即可篩選出符合題意的的取值范圍.
(1),
當時,,故無極值點;
當時,函數(shù)只有一個極值點,極值點為;
當且時,函數(shù)有兩個極值點,分別為和.
(2),依題意,當時,,
即當時,.
設(shè),則.
設(shè),則.
①當時,,,從而(當且僅當時,等號成立),
在上單調(diào)遞增.
又,當時,,從而當時,,
在上單調(diào)遞減,又,
從而當時,,即,
于是當時,.
②當時,令,得,.
故當時,,
在上單調(diào)遞減.
又,當時,,從而當時,,
在上單調(diào)遞增,又,
從而當時,,即,
于是當時,,不符合題意.
綜上所述:實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A(0,﹣2),B(4,0),圓C經(jīng)過點(0,﹣1),(0,1)及(,0).斜率為k的直線l經(jīng)過點B.
(1)求圓C的標準方程;
(2)當k=2時,過直線l上的一點P向圓C引一條切線,切點為Q,且滿足PQ=,求點P的坐標;
(3)設(shè)M,N是圓C上任意兩個不同的點,若以MN為直徑的圓與直線l都沒有公共點,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):,,
,≈2.646.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的上頂點為A,以A為圓心,橢圓的長半軸為半徑的圓與y軸的交點分別為、.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點A的直線與橢圓交于P、Q兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司培訓員工某項技能,培訓有如下兩種方式:
方式一:周一到周五每天培訓1小時,周日測試
方式二:周六一天培訓4小時,周日測試
公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進行培訓,分別估計員工受訓的平均時間精確到,并據(jù)此判斷哪種培訓方式效率更高?
在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,底面,△ABC是邊長為的正三角形,,D,E分別為AB,BC的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在一點M,使平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,曲線的極坐標方程為,曲線的極坐標方程為.
(Ⅰ)求與的直角坐標方程;
(Ⅱ)若與的交于點,與交于、兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com