【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
④若變量和之間的相關(guān)系數(shù)為,則變量和之間的負(fù)相關(guān)很強(qiáng),以上正確說法的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
由題意逐一考查所給命題的真假即可.
由題意可知:研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析時(shí):
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來刻畫回歸效果,越大說明擬合效果越好,故②錯(cuò);
③在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
④相關(guān)系數(shù)為正值,則兩變量之間正相關(guān),相關(guān)系數(shù)為負(fù)值,則兩變量之間負(fù)相關(guān),相關(guān)系數(shù)的絕對(duì)值越接近1,則變量之間的相關(guān)性越強(qiáng).若變量和之間的相關(guān)系數(shù)為,則變量和之間的負(fù)相關(guān)很強(qiáng).
綜上可得,正確說法的個(gè)數(shù)是3.
本題選擇C選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時(shí),求的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求證:;
(2)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)是否存在,使得對(duì)任意恒成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有10000人,其中男生7500人,女生2500人,為調(diào)查該校學(xué)生每則平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).調(diào)查部分結(jié)果如下列聯(lián)表:
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過4小時(shí) | 35 | ||
每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí) | 30 | ||
總計(jì) | 200 |
(1)完成上述每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”;
(2)已知在被調(diào)查的男生中,有5名數(shù)學(xué)系的學(xué)生,其中有2名學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰有1人“每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)”的概率.
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(1)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(2)已知正數(shù)滿足:存在,使得成立.試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,.
(1)當(dāng)時(shí),判斷曲線與曲線的位置關(guān)系;
(2)當(dāng)曲線上有且只有一點(diǎn)到曲線的距離等于時(shí),求曲線上到曲線距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com