【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,.

(1)當時,判斷曲線與曲線的位置關系;

(2)當曲線上有且只有一點到曲線的距離等于時,求曲線上到曲線距離為的點的坐標.

【答案】(1)相切;(2)

【解析】

(1)C的參數(shù)方程化為普通方程,將l的極坐標方程化為直角坐標方程,考查圓心到直線的距離與半徑的大小即可確定直線與圓的位置關系.

(2)由題意可得,圓心到直線的距離為,據(jù)此確定過圓心與直線平行的直線方程,聯(lián)立直線方程與圓的方程即可確定點的坐標.

1的方程為為參數(shù)).

∴圓的普通方程為.

∵直線的極坐標方程為,.

直線的直角坐標方程為:.

圓心到直線的距離為.

直線與圓相切.

2)圓上有且只有一點到直線的距離等于.

即圓心到直線的距離為.

過圓心與直線平行的直線方程為:.

聯(lián)立方程組,解得,,

上到直線距離為的點的坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】研究變量,得到一組樣本數(shù)據(jù),進行回歸分析,有以下結論

殘差平方和越小的模型,擬合的效果越好;

用相關指數(shù)來刻畫回歸效果,越小說明擬合效果越好

在回歸直線方程中,當解釋變量每增加1個單位時,預報變量平均增加0.2個單位

若變量之間的相關系數(shù)為,則變量之間的負相關很強,以上正確說法的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生物學家預言,21世紀將是細菌發(fā)電造福人類的時代。說起細菌發(fā)電,可以追溯到1910年,英國植物學家利用鉑作為電極放進大腸桿菌的培養(yǎng)液里,成功地制造出世界上第一個細菌電池。然而各種細菌都需在最適生長溫度的范圍內生長。當外界溫度明顯高于最適生長溫度,細菌被殺死;如果在低于細菌的最低生長溫度時,細菌代謝活動受抑制。為了研究某種細菌繁殖的個數(shù)是否與在一定范圍內的溫度有關,現(xiàn)收集了該種細菌的6組觀測數(shù)據(jù)如下表:

經計算得:,,線性回歸模型的殘差平方和.其中分別為觀測數(shù)據(jù)中的溫度與繁殖數(shù),.

參考數(shù)據(jù):,,

(Ⅰ)求關于的線性回歸方程(精確到0.1);

(Ⅱ)若用非線性回歸模型求得關于回歸方程為,且非線性回歸模型的殘差平方和

(。┯孟嚓P指數(shù)說明哪種模型的擬合效果更好;

(ⅱ)用擬合效果好的模型預測溫度為34℃時該種細菌的繁殖數(shù)(結果取整數(shù)).

附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計為,;

相關指數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某中學甲、乙兩班各隨機抽取 名同學,測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計甲、乙兩班同學的身高情況,則下列結論正確的是( )

A. 甲班同學身高的方差較大 B. 甲班同學身高的平均值較大

C. 甲班同學身高的中位數(shù)較大 D. 甲班同學身高在 以上的人數(shù)較多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的最大值和最小值;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,準線為已知點在拋物線上,點上,是邊長為4的等邊三角形.

(1)求的值;

(2)若直線是過定點的一條直線,且與拋物線交于兩點,過的垂

線與拋物線交于兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠每日生產一種產品噸,每日生產的產品當日銷售完畢,日銷售額為萬元,產品價格隨著產量變化而有所變化,經過一段時間的產銷,得到了,的一組統(tǒng)計數(shù)據(jù)如下表:

(1)請判斷中,哪個模型更適合刻畫,之間的關系?可從函數(shù)增長趨勢方面給出簡單的理由;

(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關于的回歸方程,并估計當日產量時,日銷售額是多少?

,,

.

線性回歸方程中,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖如圖所示,規(guī)定80分及以上者晉級成功,否則晉級失。

晉級成功

晉級失敗

合計

16

50

合計

求圖中a的值;

根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為晉級成功與性別有關?

將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為X,求X的數(shù)學期望與方差

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,直線,為平面上的動點,過點作直線的垂線,垂足為,且滿足

(1)求動點的軌跡的方程;

(2)過點作直線與軌跡交于,兩點,為直線上一點,且滿足,若的面積為,求直線的方程.

查看答案和解析>>

同步練習冊答案