【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)是否存在,使得對任意恒成立?若存在,求出的最小值;若不存在,請說明理由.
【答案】(1)答案見解析;(2)答案見解析.
【解析】分析:第一問先將函數(shù)的解析式確定,接著寫出函數(shù)的定義域,之后對函數(shù)求導(dǎo),對a進(jìn)行討論,確定導(dǎo)數(shù)的符號,從而求得函數(shù)的單調(diào)區(qū)間,第二問假設(shè)存在,之后將其轉(zhuǎn)化為最值問題,借用導(dǎo)數(shù)研究函數(shù)的圖像的走向,從而確定函數(shù)的最值,最后求得結(jié)果.
詳解:(1)由已知得,的定義域?yàn)?/span>,
則,
①當(dāng)時(shí),,,,所以,
所以函數(shù)在上單調(diào)遞減;
②當(dāng)時(shí),令,得或,
(i)當(dāng)(),即時(shí),所以(),
所以函數(shù)在上單調(diào)遞增;
(ii)當(dāng),即時(shí),在和上函數(shù),在上函數(shù),所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;
(iii)當(dāng),即時(shí),在和上函數(shù),在上函數(shù),
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
(2)若對任意恒成立,則,
記,只需.
又,
記,則,
所以在上單調(diào)遞減.
又,,
所以存在唯一,使得,即,
當(dāng)時(shí),,,的變化情況如下:
極大值 |
所以,
又因?yàn)?/span>,所以,
所以,
因?yàn)?/span>,所以,所以,
又,所以,
因?yàn)?/span>,即,且,故的最小整數(shù)值為3,
所以存在最小整數(shù),使得對任意恒成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于,設(shè)點(diǎn)的軌跡為。
(1)求曲線的方程;
(2)過點(diǎn)作直線與曲線交于點(diǎn)、,以線段為直徑的圓能否過坐標(biāo)原點(diǎn),若能,求出直線的方程,若不能請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,是的中點(diǎn),點(diǎn)在線段上,且.若將, 分別沿折起,使兩點(diǎn)重合于點(diǎn),如圖2.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有,兩個(gè)分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項(xiàng)質(zhì)量指標(biāo)值不低于130的為優(yōu)質(zhì)品.分別從,兩廠中各隨機(jī)抽取100件產(chǎn)品統(tǒng)計(jì)其質(zhì)量指標(biāo)值,得到如圖頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,分別求出分廠的質(zhì)量指標(biāo)值的眾數(shù)和中位數(shù)的估計(jì)值;
(2)填寫列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為這兩個(gè)分廠的產(chǎn)品質(zhì)量有差異?
優(yōu)質(zhì)品 | 非優(yōu)質(zhì)品 | 合計(jì) | |
合計(jì) |
(3)(i)從分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再從這10件產(chǎn)品中隨機(jī)抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;
(ii)將頻率視為概率,從分廠中隨機(jī)抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為,求的數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是奇函數(shù).
(1)求;
(2)對,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)令,若關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賽季甲、乙兩名籃球運(yùn)動員各13場比賽得分情況用莖葉圖表示如圖:
根據(jù)上圖,對這兩名運(yùn)動員地成績進(jìn)行比較,下列四個(gè)結(jié)論中,不正確的是
A. 甲運(yùn)動員得分的極差大于乙運(yùn)動員得分的極差
B. 甲運(yùn)動員得分的中位數(shù)大于乙運(yùn)動員得分的中位數(shù)
C. 甲運(yùn)動員的得分平均值大于乙運(yùn)動員的得分平均值
D. 甲運(yùn)動員的成績比乙運(yùn)動員的成績穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
④若變量和之間的相關(guān)系數(shù)為,則變量和之間的負(fù)相關(guān)很強(qiáng),以上正確說法的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)設(shè)函數(shù)的圖象與軸交點(diǎn)為,曲線在點(diǎn)處的切線方程是,求,的值;
(2)若函數(shù),求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )
A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大
C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com