【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

【答案】(1)證明見(jiàn)解析;(2).

【解析】分析:(1)中,由勾股定理可得.平面,據(jù)此可得.利用線面垂直的判斷定理可得平面.

(2)(方法一)延長(zhǎng)相交于,連接,由題意可知二面角就是平面與平面所成二面角.的中點(diǎn)為,則就是二面角的平面角.結(jié)合幾何關(guān)系計(jì)算可得.

(方法二)建立空間直角坐標(biāo)系計(jì)算可得平面的法向量.取平面的法向量為.利用空間向量計(jì)算可得.

詳解:(1)中,.

所以,所以為直角三角形,.

又因?yàn)?/span>平面,所以.

,所以平面.

(2)(方法一)如圖延長(zhǎng),相交于,連接,

則平面平面.

二面角就是平面與平面所成二面角.

因?yàn)?/span>,所以的中位線.

,這樣是等邊三角形.

的中點(diǎn)為,連接,因?yàn)?/span>平面.

所以就是二面角的平面角.

,所以.

(方法二)建立如圖所示的空間直角坐標(biāo)系,可得.

.

設(shè)是平面的法向量,則

.

取平面的法向量為.

設(shè)平面與平面所成二面角的平面角為

,從而.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家放開(kāi)計(jì)劃生育政策,鼓勵(lì)一對(duì)夫婦生育2個(gè)孩子.在某地區(qū)的100000對(duì)已經(jīng)生育了一胎夫婦中,進(jìn)行大數(shù)據(jù)統(tǒng)計(jì)得,有100對(duì)第一胎生育的是雙胞胎或多胞胎,其余的均為單胞胎.在這99900對(duì)恰好生育一孩的夫婦中,男方、女方都愿意生育二孩的有50000對(duì),男方愿意生育二孩女方不愿意生育二孩的有對(duì),男方不愿意生育二孩女方愿意生育二孩的有對(duì),其余情形有對(duì),且.現(xiàn)用樣本的頻率來(lái)估計(jì)總體的概率.

(1)說(shuō)明“其余情形”指何種具體情形,并求出,,的值;

(2)該地區(qū)為進(jìn)一步鼓勵(lì)生育二孩,實(shí)行貼補(bǔ)政策:凡第一胎生育了一孩的夫婦一次性貼補(bǔ)5000元,第一胎生育了雙胞胎或多胞胎的夫婦只有一次性貼補(bǔ)15000元.第一胎已經(jīng)生育了一孩再生育了二孩的夫婦一次性再貼補(bǔ)20000元.這種補(bǔ)貼政策直接提高了夫婦生育二孩的積極性:原先男方或女方中只有一方愿意生育二孩的夫婦現(xiàn)在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫婦仍然不愿意生育二孩.設(shè)為該地區(qū)的一對(duì)夫婦享受的生育貼補(bǔ),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,的中點(diǎn).

1)證明:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子500米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.根據(jù)短道速滑男子500米的比賽規(guī)則,運(yùn)動(dòng)員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要經(jīng)過(guò)4個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動(dòng)員順利通過(guò)每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動(dòng)員只有在摔倒或達(dá)到終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動(dòng)員在滑行最后一圈時(shí)在這一圈后已經(jīng)順利通過(guò)的交接口數(shù).

(1)求該運(yùn)動(dòng)員停止滑行時(shí)恰好已順利通過(guò)3個(gè)交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某商品在過(guò)去20天的日銷售量和日銷售價(jià)格均為銷售時(shí)間t(天)的函數(shù),日銷售量(單位:件)近似地滿足: ,日銷售價(jià)格(單位:元)近似地滿

足:

(I)寫出該商品的日銷售額S關(guān)于時(shí)間t的函數(shù)關(guān)系;

(Ⅱ)當(dāng)t等于多少時(shí),日銷售額S最大?并求出最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.

2)若,滿足不等式成立的正整數(shù)解有且僅有一個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)不同零點(diǎn).設(shè)函數(shù)的定義域?yàn)?/span>,且的最大值記為,最小值記為

1)求(用表示);

2)當(dāng)時(shí),試問(wèn)以為長(zhǎng)度的線段能否構(gòu)成一個(gè)三角形,如果不一定,進(jìn)一步求出的取值范圍,使它們能構(gòu)成一個(gè)三角形;

3)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增,若實(shí)數(shù)滿足,則a的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)求的最小值;

2)若恒成立,求的范圍;

3)若的兩根都在內(nèi),求的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案