【題目】已知某商品在過(guò)去20天的日銷(xiāo)售量和日銷(xiāo)售價(jià)格均為銷(xiāo)售時(shí)間t(天)的函數(shù),日銷(xiāo)售量(單位:件)近似地滿足: ,日銷(xiāo)售價(jià)格(單位:元)近似地滿
足:
(I)寫(xiě)出該商品的日銷(xiāo)售額S關(guān)于時(shí)間t的函數(shù)關(guān)系;
(Ⅱ)當(dāng)t等于多少時(shí),日銷(xiāo)售額S最大?并求出最大值
【答案】(I)見(jiàn)解析;(II)當(dāng)t=5時(shí),日銷(xiāo)售額S最大,最大值為1250元.
【解析】試題分析:(1)通過(guò)S=f (t)·g(t)求出函數(shù)的解析式.
(2)利用函數(shù)的解析式,通過(guò)求1≤t≤10和11≤t≤20兩段上函數(shù)的最大值.從而得函數(shù)的最大值.
試題解析:(I)由題意知,S=f (t)·g(t)=
(II)當(dāng)1≤t≤10,tN*時(shí),S=(2t+40)(-t+30)=-2 t2+20t+1200=-2 (t-5)2+1250.
因此,當(dāng)t=5時(shí),S最大值為1250;
當(dāng)11≤t≤20,tN*時(shí),S=15(-t+30)=-15t+450為減函數(shù),
因此,當(dāng)t=11時(shí),S最大值為285.
綜上,當(dāng)t=5時(shí),日銷(xiāo)售額S最大,最大值為1250元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且 =λ(0<λ<1).
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī),從高一年級(jí)期中考試成績(jī)中抽出100名學(xué)生的成績(jī),由成績(jī)得到如下的頻率分布直方圖.
根據(jù)以上頻率分布直方圖,回答下列問(wèn)題:
(1)求這100名學(xué)生成績(jī)的及格率;(大于等于60分為及格)
(2)試比較這100名學(xué)生的平均成績(jī)和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段的端點(diǎn)的坐標(biāo)是,端點(diǎn)在圓上運(yùn)動(dòng).
(Ⅰ)求線段的中點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)圓與曲線的兩交點(diǎn)為,求線段的長(zhǎng);
(Ⅲ)若點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)在軸上運(yùn)動(dòng),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為 ,且C上的兩點(diǎn)A(x1 , y1),B(x2 , y2)關(guān)于直線y=x+m對(duì)稱,并且 ,那么m= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在直線3x﹣y=0上且在第一象限,圓C與x相切,且被直線x﹣y=0截得的弦長(zhǎng)為2 .
(1)求圓C的方程;
(2)若P(x,y)是圓C上的點(diǎn),滿足 x+y﹣m≤0恒成立,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每年的春節(jié)后,某市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹(shù)綠化活動(dòng)中去.林業(yè)管理部門(mén)在植樹(shù)前,為了保證樹(shù)苗的質(zhì)量,都會(huì)在植樹(shù)前對(duì)樹(shù)苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫(huà)出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩種樹(shù)苗的高度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹(shù)苗高度平均值為,將這10株樹(shù)苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問(wèn)輸出的S大小為多少?并說(shuō)明S的統(tǒng)計(jì)學(xué)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為π,它的一個(gè)對(duì)稱中心為(,0)
(1)求函數(shù)y=f(x)圖象的對(duì)稱軸方程;
(2)若方程f(x)=在(0,π)上的解為x1,x2,求cos(x1-x2)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com