【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且 =λ(0<λ<1).

(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當λ為何值時,平面BEF⊥平面ACD?

【答案】證明:(Ⅰ)∵AB⊥平面BCD,∴AB⊥CD,

∵CD⊥BC且AB∩BC=B,∴CD⊥平面ABC.

又∵ ,

∴不論λ為何值,恒有EF∥CD,∴EF⊥平面ABC,EF平面BEF,

∴不論λ為何值恒有平面BEF⊥平面ABC.

(Ⅱ)由(Ⅰ)知,BE⊥EF,又∵平面BEF⊥平面ACD,

∴BE⊥平面ACD,∴BE⊥AC.

∵BC=CD=1,∠BCD=90°,∠ADB=60°,

,(11分)

,

由AB2=AEAC得 ,∴

故當 時,平面BEF⊥平面ACD.


【解析】(Ⅰ)根據(jù)線面垂直的判定定理可得證CD⊥平面ABC,利用已知可得對應邊成比例可得EF∥CD進而可得EF⊥平面ABC根據(jù)面面垂直的判定定理可得證平面BEF⊥平面ABC(Ⅱ)利用面面垂直的性質定理可得證BE⊥平面ACD進而得出BE⊥AC,在三角形BCD和三角形ABD中由已知可解得AC 、AE的值,故可求出 λ的值使得平面BEF⊥平面ACD。
【考點精析】通過靈活運用直線與平面垂直的性質和平面與平面垂直的判定,掌握垂直于同一個平面的兩條直線平行;一個平面過另一個平面的垂線,則這兩個平面垂直即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】a為實數(shù),函數(shù),xR

(I)a=0時,求f(x)在區(qū)間[0,2]上的最大值和最小值

(Ⅱ)求函數(shù)f(x)的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓M:(x+1)2+y2= 的圓心為M,圓N:(x﹣1)2+y2= 的圓心為N,一動圓與圓M內切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)過點(1,0)的直線l與曲線P交于A,B兩點,若 =﹣2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱,底面為等邊三角形, .

求三棱錐的體積;

在線段上尋找一點,使得,請說明作法和理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋擲兩顆骰子,計算:

1)事件兩顆骰子點數(shù)相同的概率;

2)事件點數(shù)之和小于7”的概率;

3)事件點數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在區(qū)間上的值域.

(1)求的值;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司一年需購買某種原料600噸,設公司每次都購買每次運費為3萬元,一年的總存儲費為萬元一年的總運費與總存儲費之和為(單位:萬元)

1)試用解析式得表示成的函數(shù);

2)當為何值時 取得最小值?并求出的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C所對的邊分別為a,b,c,已知2c﹣a=2bcosA.
(1)求角B的大小;
(2)若 ,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某商品在過去20天的日銷售量和日銷售價格均為銷售時間t(天)的函數(shù),日銷售量(單位:件)近似地滿足: ,日銷售價格(單位:元)近似地滿

足:

(I)寫出該商品的日銷售額S關于時間t的函數(shù)關系;

(Ⅱ)當t等于多少時,日銷售額S最大?并求出最大值

查看答案和解析>>

同步練習冊答案