【題目】在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:
(1)平面平面;
(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.
【答案】(1)證明見詳解;(2)
【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點O,連接、,可得,可求出.在中,由勾股定理可證得,結(jié)合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.
(2)以為坐標原點,建立如圖所示的空間直角坐標系,由點F在線段上,設(shè),得出的坐標,進而求出平面的一個法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結(jié)合為平面的一個法向量,用向量法即可求出與的夾角,結(jié)合圖形,寫出二面角的大小.
證明:(1)在中,
為正三角形,且
在中,
為等腰直角三角形,且
取的中點,連接
,
,
,平面
平面
平面
..平面平面
(2)以為坐標原點,建立如圖所示的空間直角坐標系,則
,
,
,
設(shè).則
設(shè)平面的一個法向量為.則
,
令,解得
與平面所成角的正弦值為,
整理得
解得或(含去)
又為平面的一個法向量
,
二面角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且,圓,點,是圓上的動點,線段的垂直平分線交直線于點,點的軌跡為曲線.
(1)討論曲線的形狀,并求其方程;
(2)若,且面積的最大值為,直線過點且不垂直于坐標軸,與曲線交于,點關(guān)于軸的對稱點為.求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是1990年-2017年我國勞動年齡(15-64歲)人口數(shù)量及其占總?cè)丝诒戎厍闆r:
根據(jù)圖表信息,下列統(tǒng)計結(jié)論不正確的是( )
A. 2000年我國勞動年齡人口數(shù)量及其占總?cè)丝诒戎氐哪暝龇鶠樽畲?/span>
B. 2010年后我國人口數(shù)量開始呈現(xiàn)負增長態(tài)勢
C. 2013年我國勞動年齡人口數(shù)量達到峰值
D. 我國勞動年齡人口占總?cè)丝诒戎貥O差超過
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,
且,
(1)求數(shù)列的通項公式.
(2)設(shè)數(shù)列滿足,
①求數(shù)列的通項公式;
②是否存在正整數(shù),使得,,成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)直線與的交點為,當(dāng)變化時點的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,點為曲線上的動點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實推進陽光體育運動,積極引導(dǎo)學(xué)生走向操場,走進大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為“鍛煉達人”.
(1)將頻率視為概率,估計我校7000名學(xué)生中“鍛煉達人”有多少?
(2)從這100名學(xué)生的“鍛煉達人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若“”為真命題,則“”為真命題
B.命題“”的否定是“”
C.命題“若,則”的逆否命題為真命題
D.“”是“”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).
(1)當(dāng)時,求過切點為的切線方程;
(2)若在區(qū)間上的最大值為,求a的值;
(3)若不等式恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點處的切線方程;
(2)當(dāng)時,證明:;
(3)判斷曲線與是否存在公切線,若存在,說明有幾條,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com