【題目】如圖,正方體ABCDA1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF,則下列結(jié)論中正確的序號(hào)是_____

①AC⊥BE ②EF∥平面ABCD ③△AEF的面積與△BEF的面積相等.④三棱錐A﹣BEF的體積為定值

【答案】①②④

【解析】

利用線面垂直的性質(zhì)判斷正確,利用線面平行的判定定理判斷正確,利用同底不同高判斷錯(cuò)誤,利用等底等高證明正確.

由于,故平面,所以,所以正確.由于,所以平面,故正確.由于三角形和三角形的底邊都是,而高前者是的距離,后者是的距離,這兩個(gè)距離不相等,故錯(cuò)誤.由于三棱錐的底面三角形的面積為定值.高是點(diǎn)到平面也即點(diǎn)到平面的距離也是定值,故三棱錐的體積為定值.故④正確.綜上所述,正確的時(shí)①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求直線DH與平面BDEF所成角的正弦值;
(Ⅲ)求二面角H﹣BD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】=在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2(tanA+tanB)= +
(Ⅰ)證明:a+b=2c;
(Ⅱ)求cosC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行高二理科學(xué)生的數(shù)學(xué)與物理競(jìng)賽,并從中抽取72名學(xué)生進(jìn)行成績(jī)分析,所得學(xué)生的及格情況統(tǒng)計(jì)如表:

物理及格

物理不及格

合計(jì)

數(shù)學(xué)及格

28

8

36

數(shù)學(xué)不及格

16

20

36

合計(jì)

44

28

72


(1)根據(jù)表中數(shù)據(jù),判斷是否是99%的把握認(rèn)為“數(shù)學(xué)及格與物理及格有關(guān)”;
(2)若以抽取樣本的頻率為概率,現(xiàn)在該校高二理科學(xué)生中,從數(shù)學(xué)及格的學(xué)生中隨機(jī)抽取3人,記X為這3人中物理不及格的人數(shù),從數(shù)學(xué)不及格學(xué)生中隨機(jī)抽取2人,記Y為這2人中物理不及格的人數(shù),記ξ=|X﹣Y|,求ξ的分布列及數(shù)學(xué)期望. 附:x2=

P(X2≥k)

0.150

0.100

0.050

0.010

k

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 若對(duì)任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的左、右焦點(diǎn)分別為F1 , F2 , 左、右頂點(diǎn)分別為A,B.以F1F2為直徑的圓O過橢圓E的上頂點(diǎn)D,直線DB與圓O相交得到的弦長(zhǎng)為 .設(shè)點(diǎn)P(a,t)(t≠0),連接PA交橢圓于點(diǎn)C,坐標(biāo)原點(diǎn)為O.

(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求|t|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對(duì)數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左、右頂點(diǎn)分別為A1、A2 , 上、下頂點(diǎn)分別為B2、B1 , O為坐標(biāo)原點(diǎn),四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為x2+y2=
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個(gè)不同的動(dòng)點(diǎn),直線OM、ON的斜率之積等于﹣ ,試探求△OMN的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒中裝有編號(hào)分別為1,2,3,4的四個(gè)形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號(hào)之和大于5的概率.

(2)從盒中任取一球,記下該球的編號(hào),將球放回,再?gòu)暮兄腥稳∫磺,記下該球的編?hào),求的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案