【題目】某校舉行高二理科學生的數(shù)學與物理競賽,并從中抽取72名學生進行成績分析,所得學生的及格情況統(tǒng)計如表:

物理及格

物理不及格

合計

數(shù)學及格

28

8

36

數(shù)學不及格

16

20

36

合計

44

28

72


(1)根據(jù)表中數(shù)據(jù),判斷是否是99%的把握認為“數(shù)學及格與物理及格有關”;
(2)若以抽取樣本的頻率為概率,現(xiàn)在該校高二理科學生中,從數(shù)學及格的學生中隨機抽取3人,記X為這3人中物理不及格的人數(shù),從數(shù)學不及格學生中隨機抽取2人,記Y為這2人中物理不及格的人數(shù),記ξ=|X﹣Y|,求ξ的分布列及數(shù)學期望. 附:x2=

P(X2≥k)

0.150

0.100

0.050

0.010

k

2.072

2.706

3.841

6.635

【答案】
(1)解:根據(jù)題意,得:

= ≈12.587,

∵12.587>6.635,

∴有99%的把握認為“數(shù)學及格與物理及格有關”


(2)解:從數(shù)學及格的學生任抽取一人,抽到物理不及格的學生的頻率為 =

從數(shù)學不及格的學生任取一人,抽到物理不及格的學生的頻率為 = ,

X可能的取值為0,1,2,3,Y可能的取值為0,1,2,

ξ的可能取值為0,1,2,3,

P(ξ=0)=P(X=0)P(Y=0)+P(X=1)P(Y=1)+P(X=2)P(Y=2)

= + + = ,

P(ξ=1)=P(X=0)P(Y=1)+P(X=1)P(Y=0)+P(X=1)P(Y=2)+P(X=2)P(Y=1)+P(X=3)P(Y=2)= + + +

+ = ,

P(ξ=2)=P(X=0)P(Y=2)+P(X=2)P(Y=0)+P(X=3)P(Y=1)

= + + =

P(ξ=3)=P(X=3)P(Y=0)= = ,

∴ξ的分布列為:

ξ

0

1

2

3

P

Eξ= +3× =


【解析】(1)根據(jù)題意,求出X2= ≈12.587>6.635,從而有99%的把握認為“數(shù)學及格與物理及格有關”.(2)從數(shù)學及格的學生任抽取一人,抽到物理不及格的學生的頻率為 = ,從數(shù)學不及格的學生任取一人,抽到物理不及格的學生的頻率為 = ,X可能的取值為0,1,2,3,Y可能的取值為0,1,2,ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列和Eξ.
【考點精析】利用離散型隨機變量及其分布列對題目進行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a1=2,且a1 , a2 , a3成等比數(shù)列.
(1)求數(shù)列{an}的通頂公式.
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n.使得Sn>60n+800?若存在,求n的最小值:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點(0,﹣2),F(xiàn)1 , F2分別是其左、右焦點,O為坐標原點,點P是橢圓上一點,PF1⊥x軸,且△OPF1的面積為
(1)求橢圓E的離心率和方程;
(2)設A,B是橢圓上兩動點,若直線AB的斜率為 ,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是 ;每輪活動中甲、乙猜對與否互不影響.各輪結果亦互不影響.假設“星隊”參加兩輪活動,求:
(I)“星隊”至少猜對3個成語的概率;
(II)“星隊”兩輪得分之和為X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:x+2y﹣4=0與坐標軸交于A、B兩點,O為坐標原點,則經(jīng)過O、A、B三點的圓的標準方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某一算法程序框圖如圖所不,則輸出的S的值為(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長為1,線段B1D1上有兩個動點EF,且EF,則下列結論中正確的序號是_____

①AC⊥BE ②EF∥平面ABCD ③△AEF的面積與△BEF的面積相等.④三棱錐A﹣BEF的體積為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足12Sn﹣36=3n2+8n,數(shù)列{log3bn}為等差數(shù)列,且b1=3,b3=27.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)令cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: + =1的焦點在x軸上,A是E的左頂點,斜率為k(k>0)的直線交E于A,M兩點,點N在E上,MA⊥NA.
(Ⅰ)當t=4,|AM|=|AN|時,求△AMN的面積;
(Ⅱ)當2|AM|=|AN|時,求k的取值范圍.

查看答案和解析>>

同步練習冊答案