【題目】某一算法程序框圖如圖所不,則輸出的S的值為(
A.
B.
C.
D.0

【答案】A
【解析】解:由已知程序框圖的功能是利用循環(huán)結構計算并輸出變量

S=sin +sin +sinπ+…+sin 的值,

由于y=sin 的周期為6,且同一周期內的6個函數(shù)值的累加和為0;

又2016÷6=336,

所以S=sin +sin +sinπ+…+sin =sin =sin =

故選:A.

【考點精析】解答此題的關鍵在于理解程序框圖的相關知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為
(Ⅰ)求圓C的圓心到直線l的距離;
(Ⅱ)設圓C與直線l交于點A、B.若點P的坐標為(3, ),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名運動員的5次測試成績如圖所示,設s1 , s2分別表示甲、乙兩名運動員成績的標準差, 、 分別表示甲、乙兩名運動員測試成績的平均數(shù),則有(
A. ,s1<s2
B. ,s1<s2
C. ,s1>s2
D. ,s1>s2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 的圖象與函數(shù)g(x)=log2(x+a)(a∈R)的圖象恰有一個交點,則實數(shù)a的取值范圍是( )
A.a>1
B.a≤﹣
C.a≥1或a<﹣
D.a>1或a≤﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校舉行高二理科學生的數(shù)學與物理競賽,并從中抽取72名學生進行成績分析,所得學生的及格情況統(tǒng)計如表:

物理及格

物理不及格

合計

數(shù)學及格

28

8

36

數(shù)學不及格

16

20

36

合計

44

28

72


(1)根據(jù)表中數(shù)據(jù),判斷是否是99%的把握認為“數(shù)學及格與物理及格有關”;
(2)若以抽取樣本的頻率為概率,現(xiàn)在該校高二理科學生中,從數(shù)學及格的學生中隨機抽取3人,記X為這3人中物理不及格的人數(shù),從數(shù)學不及格學生中隨機抽取2人,記Y為這2人中物理不及格的人數(shù),記ξ=|X﹣Y|,求ξ的分布列及數(shù)學期望. 附:x2=

P(X2≥k)

0.150

0.100

0.050

0.010

k

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱ABCD與四邊形BDEF相交于BD,∠ABC=120°,BF⊥平面ABCD,DE∥BF,BF=2DE,AF⊥FC,M為CF的中點,AC∩BD=G.
(I)求證:GM∥平面CDE;
(II)求直線AM與平面ACE成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的左、右焦點分別為F1 , F2 , 左、右頂點分別為A,B.以F1F2為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為 .設點P(a,t)(t≠0),連接PA交橢圓于點C,坐標原點為O.

(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求|t|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的鍥體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為(
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍是(
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)

查看答案和解析>>

同步練習冊答案