設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項(xiàng)和.記bn=,n∈N*,其中c為實(shí)數(shù).
(1)若c=0,且b1,b2,b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差數(shù)列,證明:c=0.
(1)見解析(2)見解析
【解析】∵{an}是首項(xiàng)為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項(xiàng)和,
∴Sn=na+d.
(1)∵c=0,∴bn==a+d.
∵b1,b2,b4成等比數(shù)列,∴=b1b4,
∴,∴ad-d2=0,∴d=0.
∵d≠0,∴a=d,∴d=2a,∴Sn=na+d=na+2a=n2a,
∴左邊=Snk=(nk)2a=n2k2a,右邊=n2Sk=n2k2a,
∴左邊=右邊,∴原式成立.
(2)∵{bn}是等差數(shù)列,
∴設(shè)公差為d1,
∴bn=b1+(n-1)d1
代入bn=,得b1+(n-1)d1=,
∴n3+n2+cd1n=c(d1-b1)對(duì)n∈N*恒成立,
∴ ∴d1=d.∵d≠0,∴d1≠0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求證:平面B1AC∥平面DC1A1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
已知P是正方體ABCDA1B1C1D1棱DD1上任意一點(diǎn),則在正方體的12條棱中,與平面ABP平行的直線是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
如圖所示,在三棱錐A-BCD中,E,F,G,H分別是棱AB,BC,CD,DA的中點(diǎn),則
(1)當(dāng)AC,BD滿足條件________時(shí),四邊形EFGH為菱形;
(2)當(dāng)AC,BD滿足條件________時(shí),四邊形EFGH是正方形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時(shí)練習(xí)卷(解析版) 題型:填空題
在正項(xiàng)等比數(shù)列{an}中,a5=,a6+a7=3,則滿足a1+a2+…+an>a1a2…an的最大正整數(shù)n的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時(shí)練習(xí)卷(解析版) 題型:填空題
已知數(shù)列{an},{bn}滿足a1=1,且an、an+1是函數(shù)f(x)=x2-bnx+2n的兩個(gè)零點(diǎn),則b10=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第5課時(shí)練習(xí)卷(解析版) 題型:填空題
某科研單位欲拿出一定的經(jīng)費(fèi)獎(jiǎng)勵(lì)科研人員,第1名得全部資金的一半多一萬元,第2名得剩下的一半多一萬元,以名次類推都得到剩下的一半多一萬元,到第10名恰好資金分完,則此科研單位共拿出________萬元資金進(jìn)行獎(jiǎng)勵(lì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn=3n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn= (Sn+1),求數(shù)列{bnan}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知在等差數(shù)列{an}中,a1=31,Sn是它的前n項(xiàng)和,S10=S22.
(1)求Sn;
(2)這個(gè)數(shù)列的前多少項(xiàng)的和最大,并求出這個(gè)最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com