已知數(shù)列{an}的前n項和為Sn3n1.

(1)求數(shù)列{an}的通項公式;

(2)bn (Sn1)求數(shù)列{bnan}的前n項和Tn.

 

1an2×3n12,nN*

【解析】(1)n1a1S12,

n≥2,anSnSn1(3n1)(3n11)2×3n1綜上所述,an2×3n1.

(2)bn (Sn1)3n=-n所以bnan=-2n×3n1,

Tn=-2×14×316×322n×3n1,

3Tn=-2×314×322(n1)×3n12n×3n相減,

2Tn=-2×12×312×322×3n12n×3n

=-2×(131323n1)2n×3n,

所以Tn(131323n1)n×3nn×3n=-,nN*

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第2課時練習卷(解析版) 題型:填空題

αβ、γ是三個平面,ab是兩條直線,有下列三個條件:①a∥γ,bβ;②a∥γ,b∥β;③b∥βaγ.如果命題“α∩βa,bγ,________a∥b”為真命題,則可以在橫線處填入的條件是________(填序號)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:解答題

{an}是首項為a,公差為d的等差數(shù)列(d≠0),Sn是其前n和.bnnN*,其中c為實數(shù).

(1)c0,b1,b2b4成等比數(shù)列,證明:Snkn2Sk(k,nN*)

(2){bn}是等差數(shù)列,證明:c0.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:解答題

已知數(shù)列{an}是首項為1,公差為d的等差數(shù)列數(shù)列{bn}是首項為1,公比為q(q1)的等比數(shù)列.

(1)a5b5q3,求數(shù)列{an·bn}的前n項和;

(2)若存在正整數(shù)k(k≥2),使得akbk.試比較anbn的大小,并說明理由..

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第4課時練習卷(解析版) 題型:解答題

已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4·a715a3a88.

(1)求數(shù)列{an}的通項公式;

(2)bn(n≥2),b1,求數(shù)列{bn}的前n項和Sn.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第4課時練習卷(解析版) 題型:解答題

求下面各數(shù)列的前n項和:

(1) ,…

(2) ,…

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第4課時練習卷(解析版) 題型:填空題

在數(shù)列{an}a11,an1an2(n≥1),則該數(shù)列的通項an________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第3課時練習卷(解析版) 題型:填空題

已知兩個數(shù)k96k的等比中項是2k,k________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第9課時練習卷(解析版) 題型:填空題

已知函數(shù)f(x)x[1,8],函數(shù)g(x)ax2,x[18],若存在x∈[1,8],使f(x)g(x)成立,則實數(shù)a的取值范圍是________

 

查看答案和解析>>

同步練習冊答案