【題目】已知是定義在上的奇函數,且,當a,,時,有成立.
Ⅰ求在區(qū)間1上的最大值;
Ⅱ若對任意的都有,求實數m的取值范圍.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)當a=2時,求不等式f(x)<4的解集.
(Ⅱ)當a< 時,對于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為(0,+),若在(0,+)上為增函數,則稱為“一階比增函數”;若在(0,+)上為增函數,則稱為”二階比增函數”。我們把所有“一階比增函數”組成的集合記為1,所有“二階比增函數”組成的集合記為2。
(1)已知函數,若∈1,求實數的取值范圍,并證明你的結論;
(2)已知0<a<b<c,∈1且的部分函數值由下表給出:
t | 4 |
求證:;
(3)定義集合,且存在常數k,使得任取x∈(0,+),<k},請問:是否存在常數M,使得任意的∈,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列推理過程不是演繹推理的是( ).
①一切奇數都不能被2整除,2019是奇數, 2019不能被2整除;
②由“正方形面積為邊長的平方”得到結論:正方體的體積為棱長的立方;
③在數列中,,,由此歸納出的通項公式;
④由“三角形內角和為”得到結論:直角三角形內角和為 .
A. ① ② B. ② ③ C. ③ ④ D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了防止受到核污染的產品影響民眾的身體健康,某地要求這種產品在進入市場前必須進行兩輪苛刻的核輻射檢測,只有兩輪檢測都合格才能上市銷售,否則不能銷售。已知該產品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,每輪檢測結果只有“合格”、“不合格”兩種,且兩輪檢測是否合格相互之間沒有影響。
(1)求該產品不能上市銷售的概率;
(2)如果這種產品可以上市銷售,則每件產品可獲利50元;如果這種產品不能上市銷售,則每件產品虧損80元(即獲利為80元),F有這種產品4件,記這4件產品獲利的金額為元,求的分布列。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經觀測,某昆蟲的產卵數y與溫度x有關,現將收集到的溫度xi和產卵數yi(i=1,2,…,10)的10組觀測數據作了初步處理,得到如下圖的散點圖及一些統(tǒng)計量表.
表中 ,
(1)根據散點圖判斷, , 與 哪一個適宜作為y與x之間的回歸方程模型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據.
①試求y關于x回歸方程;
②已知用人工培養(yǎng)該昆蟲的成本h(x)與溫度x和產卵數y的關系為h(x)=x(lny﹣2.4)+170,當溫度x(x取整數)為何值時,培養(yǎng)成本的預報值最?
附:對于一組數據(u1,v1),(u2,v2),…(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為β=,α=﹣β.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點為極點, 軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的參數方程為,( 為參數, ),曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設直線與曲線相交于, 兩點,當變化時,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E、F分別在邊BC、DC上, =λ , =μ ,若 =1, =﹣ ,則λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com