【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E、F分別在邊BC、DC上, =λ , =μ ,若 =1, =﹣ ,則λ+μ=( )
A.
B.
C.
D.
【答案】C
【解析】解:由題意可得若 =( + )( + )= + + +
=2×2×cos120°+ +λ +λ μ =﹣2+4μ+4λ+λμ×2×2×cos120°
=4λ+4μ﹣2λμ﹣2=1,
∴4λ+4μ﹣2λμ=3 ①.
=﹣ (﹣ )= =(1﹣λ) (1﹣μ) =(1﹣λ) (1﹣μ)
=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣ ,
即﹣λ﹣μ+λμ=﹣ ②.
由①②求得λ+μ= ,
故答案為: .
利用兩個向量的加減法的法則,以及其幾何意義,兩個向量的數(shù)量積的定義由 =1,求得4λ+4μ﹣2λμ=3 ①;再由 =﹣ ,求得﹣λ﹣μ+λμ=﹣ ②.結(jié)合①②求得λ+μ的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,當a,,時,有成立.
Ⅰ求在區(qū)間1上的最大值;
Ⅱ若對任意的都有,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】禽流感一直在威脅我們的生活,某疾病控制中心為了研究禽流感病毒繁殖個數(shù)(個)隨時間(天)變化的規(guī)律,收集數(shù)據(jù)如下:
天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖個數(shù) | 6 | 12 | 25 | 49 | 95 | 190 |
作出散點圖可看出樣本點分布在一條指數(shù)型函數(shù)的周圍.
保留小數(shù)點后兩位數(shù)的參考數(shù)據(jù):
,,,,,,,,其中
(1)求出關(guān)于的回歸方程(保留小數(shù)點后兩位數(shù)字);
(2)已知,估算第四天的殘差.
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,這是2017年我國重要的主場外交活動,對推動國際和地區(qū)合作具有重要意義.某高中政教處為了調(diào)查學生對“一帶一路”的關(guān)注情況,在全校組織了“一帶一路知多少”的知識問卷測試,并從中隨機抽取了12份問卷,得到其測試成績(百分制),如莖葉圖所示.
(1)寫出該樣本的眾數(shù)、中位數(shù),若該校共有3000名學生,試估計該校測試成績在70分以上的人數(shù);
(2)從所抽取的70分以上的學生中再隨機選取4人.
①記表示選取4人的成績的平均數(shù),求;
②記表示測試成績在80分以上的人數(shù),求的分布和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓 的離心率為,長軸長為4,過橢圓的左頂點作直線,分別交橢圓和圓于相異兩點
(1) 若直線的斜率為1,求的值:
(2) 若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關(guān)于函數(shù)的判斷正確的是( 。
①的解集是;
②極小值,是極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓 + =1(a>b>0)的左、右焦點分別為F1、F2 , 右頂點為A,上頂點為B,已知|AB|= |F1F2|.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點F1 , 經(jīng)過原點O的直線l與該圓相切,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角梯形中, , , , 分別為, 的中點,以為圓心, 為半徑的圓交于,點在弧上運動(如圖).若,其中, ,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機變量,則P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com