【題目】為了解春季晝夜溫差大小與某種子發(fā)芽數(shù)之間的關系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了明天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“君不小于25”的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5填中的另三天的數(shù)據(jù),求出關于的線性回歸方程,.
(參考公式:,).
【答案】(1)(2)
【解析】分析:(1)用數(shù)組表示選出2天的發(fā)芽情況,用列舉法可得的所有取值情況,分析可得均不小于25的情況數(shù)目,由古典概型公式,計算可得答案;
(2)根據(jù)所給的數(shù)據(jù),先做出的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程.
詳解:
(1)所有的基本事件為;,;;,共個.
設“均不小于”為事件,則事件包含的基本事件為,,,共個.
故由古典概型公式得.
(2)由數(shù)據(jù)得,另天的平均數(shù),
,所以,
,所以關于的線性回歸方程為.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)對定義域中任意x均滿足,則稱函數(shù)的圖象關于點對稱.
(1)已知函數(shù)的圖象關于點對稱,求實數(shù)m的值;
(2)已知函數(shù)在上的圖象關于點對稱,且當時,,求函數(shù)在上的解析式;
(3)在(1)(2)的條件下,當時,若對任意實數(shù),恒有成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,,P,Q是橢圓上的兩點(點Q在第一象限),且直線PM,QM的斜率互為相反數(shù).若,則直線QM的斜率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若,求在處的切線方程;
(2)若對于任意的正數(shù),恒成立,求實數(shù)的值;
(3)若函數(shù)存在兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:和點.
(1)求橢圓C的焦點坐標和離心率;
(2)設直線l:與橢圓C交于A,B兩點,求弦長;
(3)求通過M點且被這點平分的弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣cosx,a≠0.
(1)若函數(shù)f(x)為單調(diào)函數(shù),求a的取值范圍;
(2)若x∈[0,2π],求:當a≥時,函數(shù)f(x)僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,
已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,
求直線的方程;(2)設P為平面上的點,滿足:
存在過點P的無窮多對互相垂直的直線和,
它們分別與圓和圓相交,且直線被圓
截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名青少年進行調(diào)查,得到如下列聯(lián)表:
常喝 | 不常喝 | 總計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
總計 | 30 |
已知從這30名青少年中隨機抽取1名,抽到肥胖青少年的概率為.
(1)請將列聯(lián)表補充完整;(2)是否有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關?
獨立性檢驗臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中n=a+b+c+d.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com