【題目】如圖,,P,Q是橢圓上的兩點(點Q在第一象限),且直線PM,QM的斜率互為相反數(shù).若,則直線QM的斜率為__________.
【答案】
【解析】
延長,交橢圓于點,由橢圓的對稱性和直線PM,QM的斜率互為相反數(shù)可知:,設出直線的斜率,寫出直線的直線方程,將直線方程與橢圓方程聯(lián)立,消得到一元二次方程,結合,利用一元二次方程根與系數(shù)的關系,求出點坐標,并代入橢圓方程中,求出直線的斜率,也就能求出直線QM的斜率.
延長,交橢圓于點,由橢圓的對稱性和直線PM,QM的斜率互為相反數(shù)可知:,如下圖所示:
設直線的斜率為,所以直線的方程為:,與橢圓方程聯(lián)立得:,消元得,,
設,根據(jù)根與系數(shù)關系可得:,
,,
所以,把代入橢圓方程中得,,解得,
所以直線QM的斜率為.
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)者計劃在某旅游景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向此創(chuàng)業(yè)者對該景區(qū)附近五家“農(nóng)家樂”跟蹤調查了100天,這五家“農(nóng)家樂的收費標準互不相同得到的統(tǒng)計數(shù)據(jù)如下表,x為收費標準(單位:元/日),t為入住天數(shù)(單位:天),以頻率作為各自的“入住率”,收費標準x與“入住率”y的散點圖如圖
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
(1)若從以上五家“農(nóng)家樂”中隨機抽取兩家深人調查,記為“入住率超過0.6的農(nóng)家樂的個數(shù),求的概率分布列
(2)z=lnx,由散點圖判斷與哪個更合適于此模型(給出判斷即可不必說明理由)?并根據(jù)你的判斷結果求回歸方程(a,的結果精確到0.1)
(3)根據(jù)第(2)問所求的回歸方程,試估計收費標準為多少時,100天銷售額L最大?(100天銷售額L=100×入住率×收費標準x)
參考數(shù)據(jù), ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連結而成的,圓柱與圓錐的底面圓半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為.已知圓柱底面造價為元,圓柱側面造價為元,圓錐側面造價為元.
(1)將圓柱的高表示為底面圓半徑的函數(shù),并求出定義域;
(2)當容器造價最低時,圓柱的底面圓半徑為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù).
(1)討論函數(shù)的單調性;
(2)當時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的標準方程是.
(1)求它的焦點坐標和準線方程;
(2)直線過已知拋物線的焦點且傾斜角為45°,且與拋物線的交點為,求的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題中:
①若向量、、是空間的一組基底,則向量、、也是空間的一組基底;
②已知、、三點不共線,點為平面外任意一點,若點滿足,則點平面;
③曲線與曲線(且)有相同的焦點.
④過定圓上一定點作圓的動弦,為坐標原點,若,則動點的軌跡為橢圓;
⑤若過點的直線交橢圓于不同的兩點,且是的中點,則直線的方程是.
其中真命題的序號是______.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽數(shù)之間的關系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了明天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“君不小于25”的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5填中的另三天的數(shù)據(jù),求出關于的線性回歸方程,.
(參考公式:,).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大。
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com