【題目】如圖,,PQ是橢圓上的兩點(點Q在第一象限),且直線PMQM的斜率互為相反數(shù).若,則直線QM的斜率為__________

【答案】

【解析】

延長,交橢圓于點,由橢圓的對稱性和直線PM,QM的斜率互為相反數(shù)可知:,設出直線的斜率,寫出直線的直線方程,將直線方程與橢圓方程聯(lián)立,消得到一元二次方程,結合,利用一元二次方程根與系數(shù)的關系,求出點坐標,并代入橢圓方程中,求出直線的斜率,也就能求出直線QM的斜率.

延長,交橢圓于點,由橢圓的對稱性和直線PMQM的斜率互為相反數(shù)可知:,如下圖所示:

設直線的斜率為,所以直線的方程為:,與橢圓方程聯(lián)立得:,消元得,

,根據(jù)根與系數(shù)關系可得:,

,

所以,把代入橢圓方程中得,,解得,

所以直線QM的斜率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某創(chuàng)業(yè)者計劃在某旅游景區(qū)附近租賃一套農(nóng)房發(fā)展成特色農(nóng)家樂,為了確定未來發(fā)展方向此創(chuàng)業(yè)者對該景區(qū)附近五家農(nóng)家樂跟蹤調查了100天,這五家農(nóng)家樂的收費標準互不相同得到的統(tǒng)計數(shù)據(jù)如下表,x為收費標準(單位:/),t為入住天數(shù)(單位:),以頻率作為各自的入住率,收費標準x入住率”y的散點圖如圖

x

100

150

200

300

450

t

90

65

45

30

20

(1)若從以上五家農(nóng)家樂中隨機抽取兩家深人調查,記入住率超過0.6的農(nóng)家樂的個數(shù),求的概率分布列

(2)zlnx,由散點圖判斷哪個更合適于此模型(給出判斷即可不必說明理由)?并根據(jù)你的判斷結果求回歸方程(a,的結果精確到0.1)

(3)根據(jù)第(2)問所求的回歸方程,試估計收費標準為多少時,100天銷售額L最大?(100天銷售額L100×入住率×收費標準x)

參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的某種容器的體積為,它是由圓錐和圓柱兩部分連結而成的,圓柱與圓錐的底面圓半徑都為.圓錐的高為,母線與底面所成的角為;圓柱的高為.已知圓柱底面造價為,圓柱側面造價為,圓錐側面造價為.

(1)將圓柱的高表示為底面圓半徑的函數(shù),并求出定義域;

(2)當容器造價最低時,圓柱的底面圓半徑為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)討論函數(shù)的單調性;

(2)當時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形, , , 、分別是棱的中點.

(1)證明:直線平面;

(2)求證:面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的標準方程是.

(1)求它的焦點坐標和準線方程;

(2)直線過已知拋物線的焦點且傾斜角為45°,且與拋物線的交點為,求的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下命題中:

①若向量、是空間的一組基底,則向量、也是空間的一組基底;

②已知、三點不共線,點為平面外任意一點,若點滿足,則點平面;

③曲線與曲線)有相同的焦點.

④過定圓上一定點作圓的動弦為坐標原點,若,則動點的軌跡為橢圓;

⑤若過點的直線交橢圓于不同的兩點,且的中點,則直線的方程是.

其中真命題的序號是______.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽數(shù)之間的關系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了明天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“君不小于25”的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5填中的另三天的數(shù)據(jù),求出關于的線性回歸方程,.

(參考公式:,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MACPA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大。

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

同步練習冊答案