科目: 來源: 題型:
【題目】 在平面直角坐標系中,拋物線y=-x2+bx+c經(jīng)過點A、B、C,已知A(-1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸的平行線,交拋物線于點D,當△CDP為等腰三角形時,求點P的坐標;
(3)如圖2,拋物線的頂點為E,EF⊥x軸于點F,N是直線EF上一動點,M(m,0)是x軸一個動點,請直接寫出CN+MN+MB的最小值以及此時點M、N的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】 問題發(fā)現(xiàn):如圖(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE繞點B逆時針旋轉(zhuǎn),H為CD的中點,當點C與點E重臺時,BH與AE的位置關(guān)系為______,BH與AE的數(shù)量關(guān)系為______;
問題證明:在Rt△BDE繞點B旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立?若成立,請就圖(2)的情形給出證明若不成立,請說明理由;
拓展應用:在Rt△BDE繞點B旋轉(zhuǎn)的過程中,當DE∥BC時,請直接寫出BH2的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】改革開放40年來,中國已經(jīng)成為領(lǐng)先世界的基建強國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點F在線段HG上運動,BC∥HG,AE⊥BC,垂足為點E,AE的延長線交HG于點G,經(jīng)測量,∠ABD=11°,∠ADE=26°,∠ACE=31°,BC=20m,EG=0.6m.
(1)求線段AG的長度;
(2)連接AF,當線段AF⊥AC時,求點F和點G之間的距離.
(所有結(jié)果精確到0.1m.參考數(shù)據(jù):tan11°≈0.19,tan26°≈0.49,tan31°≈0.60)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線與雙曲線(x>0)交于點.
(1)求a,k的值;
(2)已知直線過點且平行于直線,點P(m,n)(m>3)是直線上一動點,過點P分別作軸、軸的平行線,交雙曲線(x>0)于點、,雙曲線在點M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標都是整數(shù)的點叫做整點.
①當時,直接寫出區(qū)域內(nèi)的整點個數(shù);②若區(qū)域內(nèi)的整點個數(shù)不超過8個,結(jié)合圖象,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,AD切⊙于點A,CD∥OA交⊙O于另一點E.
(1)求證:△ACD∽△BCA;
(2)若A是⊙O上一動點,則
①當∠B=_____時,以A,O,C,D為頂點的四邊形是正方形;
②當∠B=_____時,以A,O,C,E為頂點的四邊形是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】 鄭州外國語中學為了解學生課下閱讀所用時間的情況,從各年級學生中隨機抽查了一部分學生進行統(tǒng)計,下面是針對此次統(tǒng)計所制作的不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖表信息回答下列問題:
組別 | 時間段(小時) | 頻數(shù) | 頻率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
(1)表中a=______b=______;
(2)請補全頻數(shù)分布直方圖;
(3)樣本中,學生日閱讀所用時間的中位數(shù)落在第______組;
(4)該校共有學生3000人,請估計學生日閱讀量不少于1.5小時的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中線,E是邊BC上一動點,將△BED沿ED折疊,點B落在點F處,EF交線段CD于點G,當△DFG是直角三角形時,則CE=__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點P從點B出發(fā),以cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發(fā)以2cm/s的速度沿B→A→C運動到點C停止.若△BPQ的面積為y運動時間為x(s),則下列圖象中能大致反映y與x之間關(guān)系的是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD、AB的中點,下列結(jié)論:①BE⊥AC;②四邊形BEFG是平行四邊形;③△EFG≌△GBE;④EG=EF,其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O直徑,點D為AB下方⊙O上一點,點C為弧ABD中點,連接CD,CA.
(1)若∠ABD=α,求∠BDC(用α表示);
(2)過點C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com