【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點PAD邊上以每秒1cm的速度從點A向點D運動,點QBC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當(dāng)點P到達(dá)點D時停止(同時點Q也停止),在這段時間內(nèi),線段PQ有(。┐纹叫杏AB?

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】試題分析:矩形ABCD,AD=12cm∴AD=BC=12cm,∵PQ∥ABAP∥BQ,四邊形ABQP是平行四邊形,∴AP=BQ,∴Q走完BC一次就可以得到一次平行,∵P的速度是1cm/秒,兩點運動的時間為12÷1=12s∴Q運動的路程為12×4=48cm,BC上運動的次數(shù)為48÷12=4次,線段PQ4次平行于AB,故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,QPN的頂點P在正方形ABCD兩條對角線的交點處,QPN=α,將QPN繞點P旋轉(zhuǎn),旋轉(zhuǎn)過程中QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合)

(1)如圖,當(dāng)α=90°時,DE,DF,AD之間滿足的數(shù)量關(guān)系是 ;

(2)如圖,將圖中的正方形ABCD改為ADC=120°的菱形,其他條件不變,當(dāng)α=60°時,(1)中的結(jié)論變?yōu)镈E+DF=AD,請給出證明;

(3)在(2)的條件下,若旋轉(zhuǎn)過程中QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,在△ABC中,ADBCD,AE平分∠DAC,BAC=80°,B=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的長AB=30,BC=20.

(1)如圖(1)若沿矩形ABCD四周有寬為1的環(huán)形區(qū)域圖中所形成的兩個矩形ABCDABCD相似嗎?請說明理由

(2)如圖(2),x為多少時圖中的兩個矩形ABCDABCD相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路的路基是等腰梯形ABCD,斜坡AD、BC的坡度i=1:1.5,路基AE高為3米,現(xiàn)由單線改為復(fù)線,路基需加寬4米,(即AH=4米),加寬后也成等腰梯形,且GH、BF斜坡的坡度i'=1:2,若路長為10000米,則加寬的土石方量共是____立方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩點在數(shù)軸上表示的數(shù)分別為ab,且點A在點B的左邊,=10,a+b=80,ab<0.

(1)求出a,b的值;

(2)現(xiàn)有一只電子螞蟻P從點A出發(fā),以3個單位長度/秒的速度向右運動,同時另一只電子螞蟻Q從點B出發(fā),以2個單位長度/秒的速度向左運動,經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相遇?相遇的點表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立模型:

如圖1,已知ABC,AC=BC,C=90°,頂點C在直線l上.

操作:

過點A作ADl于點D,過點B作BEl于點E.求證:CAD≌△BCE

模型應(yīng)用:

(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.

(2)如圖3,在直角坐標(biāo)系中,點B(8,6),作BAy軸于點A,作BCx軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內(nèi).問點A、P、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若m,n,p滿足m-n=8,mn+p2+16=0,求m+n+p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠B=90°,tanBAC=,半徑為2的⊙O從點A開始(圖1),沿AB向右滾動,滾動時始終與AB相切(切點為D);當(dāng)圓心O落在AC上時滾動停止,此時⊙OBC相切于點E(圖2).作OGAC于點G.

(1)利用圖2,求cosBAC的值;

(2)當(dāng)點D與點A重合時(如圖1),求OG;

(3)如圖3,在⊙O滾動過程中,設(shè)AD=x,請用含x的代數(shù)式表示OG,并寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案