【題目】小敏同學(xué)測(cè)量一建筑物CD的高度,她站在B處仰望樓頂C,測(cè)得仰角為30°,再往建筑物方向走30m,到達(dá)點(diǎn)F處測(cè)得樓頂C的仰角為45°(B,F,D在同一條直線上)。一直小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數(shù)據(jù): ≈1.732, ≈1.414,結(jié)果保留整數(shù))

【答案】解:延長(zhǎng)AE交CD于點(diǎn)G.設(shè)CG=xm,

在直角△CGE中,∠CEG=45°,則EG=CG=xm.

在直角△ACG中,AG= xm.

∵AG-EG=AE,

x-x=30,

解得:x=15( +1)≈15×2.732≈40.98(m).

則CD=40.98+1.5=42.48(m).

答:這棟建筑物CD的高度約為42m


【解析】通過延長(zhǎng)AE,把特殊角放到直角三角形中,利用三角函數(shù)用CG=x的代數(shù)式表示AG、EG,根據(jù)線段之差列出方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷△ABC是直角三角形的是( 。

A. abc345 B. A:∠B:∠C345

C. A+B=∠C D. abc12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】碼頭工人每天往一艘輪船50噸貨物,裝載完畢恰好用了8天時(shí)間.
(1)輪船到達(dá)目的地后開始卸貨,平均卸貨速度v(單位:噸/天)與卸貨時(shí)間t(單位:天)之間有怎樣的函數(shù)關(guān)系?
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若原有碼頭工人10名,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠B=30°,AB≠BC ,將△ABC沿AC翻折至△AB′C ,連結(jié)B ′D. 若 ,∠AB ′D=75°,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,已知矩形紙片ABCD,AD2,AB4,將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB、CD交于點(diǎn)GF,AEFG交于點(diǎn)O

1)如圖1,求證:AG、EF四點(diǎn)圍成的四邊形是菱形;

2)如圖2,點(diǎn)N是線段BC的中點(diǎn),且ONOD,求折痕FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
①ac<0; ②當(dāng)x>1時(shí),y的值隨x值的增大而減;
③當(dāng) 時(shí), ; ④3是方程ax2+(b﹣1)x+c=0的一個(gè)根.
其中正確的結(jié)論是(填正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,BDAC于點(diǎn)D,AD3.5cm,點(diǎn)P、Q分別為AB、AD上的兩個(gè)定點(diǎn)且BPAQ2cm,若在BD上有一動(dòng)點(diǎn)E使PEQE最短,則PEQE的最小值為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本1.4有這樣一道例題:
問題4:用一根長(zhǎng)22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學(xué)提出問題:“用這根長(zhǎng)22cm的鐵絲能否圍成面積最大的矩形?若能圍成,求出面積最大值;若不能圍成,請(qǐng)說明理由.”請(qǐng)你完成該同學(xué)提出的問題.

查看答案和解析>>

同步練習(xí)冊(cè)答案