【題目】課本1.4有這樣一道例題:
問(wèn)題4:用一根長(zhǎng)22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學(xué)提出問(wèn)題:“用這根長(zhǎng)22cm的鐵絲能否圍成面積最大的矩形?若能?chē),求出面積最大值;若不能?chē),?qǐng)說(shuō)明理由.”請(qǐng)你完成該同學(xué)提出的問(wèn)題.
【答案】
(1)解:設(shè)當(dāng)矩形的一邊長(zhǎng)為x cm時(shí),
根據(jù)題意得:x(11﹣x)=30,
整理得:x2﹣11x+30=0,
解得:x=5,或x=6,
當(dāng)x=5時(shí),11﹣x=6;
當(dāng)x=6時(shí),11﹣x=5;
即能?chē)擅娣e是30cm2的矩形,此時(shí)長(zhǎng)和寬分別為5cm、6cm;
(2)解:根據(jù)題意得:x(11﹣x)=32,
整理得:x2﹣11x+32=0,
∵△=(﹣11)2﹣4×1×32<0,
方程無(wú)解,因此不能?chē)擅娣e是32cm2的矩形;
提出問(wèn)題:能?chē);理由如下?/span>
設(shè)當(dāng)矩形的一邊長(zhǎng)為x cm時(shí),面積為y cm2.
由題意得:y=x( ﹣x)=﹣x2+11x=﹣(x﹣ )2+ ,
∵(x﹣ )2≥0,
∴﹣(x﹣ )2+ ≤ .
∴當(dāng)x= 時(shí),y有最大值= ,此時(shí) ﹣x= .
答:當(dāng)矩形的各邊長(zhǎng)均為 cm時(shí),圍成的面積最大,最大面積是 cm2.
【解析】(1)根據(jù)矩形的性質(zhì)對(duì)邊相等,得到長(zhǎng)+寬=11,求出能?chē)擅娣e是30cm2的矩形,此時(shí)長(zhǎng)和寬分別為5cm、6cm;(2)同(1)根據(jù)矩形的面積公式列出等式,由△<0,得到方程無(wú)解,因此不能?chē)擅娣e是32cm2的矩形;討論當(dāng)矩形的一邊長(zhǎng)為x時(shí),面積為y時(shí),得到二次函數(shù),求出y的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏同學(xué)測(cè)量一建筑物CD的高度,她站在B處仰望樓頂C,測(cè)得仰角為30°,再往建筑物方向走30m,到達(dá)點(diǎn)F處測(cè)得樓頂C的仰角為45°(B,F,D在同一條直線(xiàn)上)。一直小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數(shù)據(jù): ≈1.732, ≈1.414,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過(guò)A,B,C三點(diǎn)的圓上(如圖①)
(1)[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過(guò)A, B,C三點(diǎn)的圓上嗎?
(2)我們知道,如果點(diǎn)D不在經(jīng)過(guò)A,B,C三點(diǎn)的圓上,那么點(diǎn)D要么在圓O外,要么在圓O內(nèi),以下該同學(xué)的想法說(shuō)明了點(diǎn)D不在圓O外。
請(qǐng)結(jié)合圖④證明點(diǎn)D也不在⊙O外.
[結(jié)論]綜上可得結(jié)論:如圖②,如果∠ACB=∠ADB=a(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D在經(jīng)過(guò)A,B,C三點(diǎn)的圓上,即:點(diǎn)A、B、C、D四點(diǎn)共圓。
[應(yīng)用]利用上述結(jié)論解決問(wèn)題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角度得△ADE,連接BE CD,延長(zhǎng)CD交BE于點(diǎn)F,
圖⑤
①求證:點(diǎn)B、C、A、F四點(diǎn)共圓;②求證:BF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為一位旅行者在早晨8時(shí)從城市出發(fā)到郊外所走的路程單位:千米與時(shí)間單位:時(shí)的變量關(guān)系的圖象.根據(jù)圖象回答問(wèn)題:
在這個(gè)變化過(guò)程中,自變量是______ ,因變量是______ .
時(shí)所走的路程是多少?他休息了多長(zhǎng)時(shí)間?
他從休息后直至到達(dá)目的地這段時(shí)間的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)你解決相關(guān)問(wèn)題:
在函數(shù)中,自變量x可以是任意實(shí)數(shù);
如表y與x的幾組對(duì)應(yīng)值:
X | 0 | 1 | 2 | 3 | 4 | ||||||
Y | 0 | 1 | 2 | 3 | 2 | 1 | a |
______;
若,為該函數(shù)圖象上不同的兩點(diǎn),則______;
如圖,在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象:
該函數(shù)有______填“最大值”或“最小值”;并寫(xiě)出這個(gè)值為______;
求出函數(shù)圖象與坐標(biāo)軸在第二象限內(nèi)所圍成的圖形的面積;
觀(guān)察函數(shù)的圖象,寫(xiě)出該圖象的兩條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,完成下列說(shuō)理過(guò)程
如圖,已知點(diǎn)A,O,B在同一條直線(xiàn)上,OE平分∠BOC,∠DOE=90°
求證:OD是∠AOC的平分線(xiàn);
證明:如圖,因?yàn)?/span>OE是∠BOC的平分線(xiàn),
所以∠BOE=∠COE.( )
因?yàn)椤?/span>DOE=90°
所以∠DOC+∠ 。90°
且∠DOA+∠BOE=180°﹣∠DOE= °.
所以∠DOC+∠ =∠DOA+∠BOE.
所以∠ 。健稀 。
所以OD是∠AOC的平分線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線(xiàn)段AB有交點(diǎn),則r的取值范圍是( )
A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)MN與x軸、y軸分別相交于B、A兩點(diǎn),OA,OB的長(zhǎng)滿(mǎn)足式子
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)O到AB的距離為,求線(xiàn)段AB的長(zhǎng);
(3)在(2)的條件下,x軸上是否存在點(diǎn)P,使ΔABP使以AB為腰的等腰三角形,若存在請(qǐng)直接寫(xiě)出滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn):與直線(xiàn):交于點(diǎn),則______.
【答案】-1
【解析】
將點(diǎn)A的坐標(biāo)代入兩直線(xiàn)解析式得出關(guān)于m和b的方程組,解之可得.
解:由題意知,
解得,
故答案為:.
【點(diǎn)睛】
本題主要考查兩直線(xiàn)相交或平行問(wèn)題,解題的關(guān)鍵是掌握兩直線(xiàn)的交點(diǎn)坐標(biāo)必定同時(shí)滿(mǎn)足兩個(gè)直線(xiàn)解析式.
【題型】填空題
【結(jié)束】
11
【題目】如圖,長(zhǎng)方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則△AFC的面積等于___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com