【題目】如圖,在矩形ABCD中,AB=8,AD=6,點M為對角線AC上的一個動點(不與端點A,C重合),過點M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為( )
A.6
B.12
C.18
D.24
【答案】B
【解析】解:∵四邊形ABCD是矩形,
∴∠D=90°,
∵ME⊥AD,MF⊥DC,
∴∠DEM=90°,∠DFM=90°,
∴四邊形EDFM是矩形;
∴DF=EM,DE=FM,F(xiàn)M∥AD,ME∥CD,
∴△AEM∽△ADC,
∴ = ,
設(shè)DF=EM=x,DE=FM=y,
∴ = ,
y=﹣ x+6,
四邊形EMFD面積=xy=x(﹣ x+6)=﹣ (x﹣4)2+12,
故x=4時,四邊形EMFD面積的最大值為12.
所以答案是:B.
【考點精析】本題主要考查了二次函數(shù)的最值和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】從數(shù)﹣2,﹣ ,0,4中任取一個數(shù)記為m,再從余下的三個數(shù)中,任取一個數(shù)記為n,若k=mn,則正比例函數(shù)y=kx的圖象經(jīng)過第三、第一象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點P在∠AOB內(nèi),點M、N分別是點P關(guān)于AO、BO所在直線的對稱點.
(1)若△PEF的周長為20,求MN的長.
(2)若∠O=50°,求∠EPF的度數(shù).
(3)請直接寫出∠EPF與∠O的數(shù)量關(guān)系是_____________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,則CE2+CF2等于( )
A.75
B.100
C.120
D.125
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,則∠A、∠C、∠E、∠F滿足的數(shù)量關(guān)系是( )
A. ∠A=∠C+∠E+∠F B. ∠A+∠E﹣∠C﹣∠F=180°
C. ∠A﹣∠E+∠C+∠F=90° D. ∠A+∠E+∠C+∠F=360°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,點A、B為函數(shù)L圖象上的任意兩點,點A坐標為(x1 , y1),點B坐標為(x2 , y2),把式子 稱為函數(shù)L從x1到x2的平均變化率;對于函數(shù)K:y=2x2﹣3x+1圖象上有兩點A(x1 , y1)和B(x2 , y2),當x1=1,x2﹣x1= 時,函數(shù)K從x1到x2的平均變化率是;當x1=1,x2﹣x1= (n為正整數(shù))時,函數(shù)K從x1到x2的平均變化率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,為坐標原點,四邊形是矩形,點的坐標分別為,點以的速度從出發(fā)向終點運動,點以的速度從出發(fā)向終點運動,當是以為一腰的等腰三角形時,點的坐標為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結(jié)DE.
(1)當∠BAD=60°,求∠CDE的度數(shù);
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市開展一項自行車旅游活動,線路需經(jīng)A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com