【題目】某市開展一項自行車旅游活動,線路需經(jīng)A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

【答案】解:由題意可知∠DCA=180°﹣75°﹣45°=60°,

∵BC=CD,

∴△BCD是等邊三角形.

過點B作BE⊥AD,垂足為E,如圖所示:

由題意可知∠DAC=75°﹣30°=45°,

∵△BCD是等邊三角形,

∴∠DBC=60° BD=BC=CD=20km,

∴∠ADB=∠DBC﹣∠DAC=15°,

∴BE=sin15°BD≈0.25×20≈5m,

∴AB= = ≈7m,

∴AB+BC+CD≈7+20+20≈47m.

答:從A地跑到D地的路程約為47m.


【解析】由已知易證△BCD是等邊三角形,要求從A地跑到D地的路程,已經(jīng)知道BC、DC的長,只需求出AB的長即可,由題意可求出∠DAC=45°,因此過點B作BE⊥AD,在Rt△BDE中求出BE的長,再在等腰直角三角形AEB中求出AB即可求出結(jié)果。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=6,點M為對角線AC上的一個動點(不與端點A,C重合),過點M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為( )

A.6
B.12
C.18
D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為5,P為⊙O上一點,P(4,3),PC、PD為⊙O的弦,分別交y軸正半軸于E、F,且PE=PF,連CD,設(shè)直線CD為y=kx+b,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,分別以AB、AD為邊作等邊△ABE和等邊△ADF,分別連接CE,CF和EF,則下列結(jié)論,一定成立的個數(shù)是(  )

①△CDF≌△EBC;

②△CEF是等邊三角形;

③∠CDF=∠EAF;

④CE∥DF

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點OA在數(shù)軸上表示的數(shù)分別是0,l,將線段OA分成1000等份,其分點由左向右依次為M1M2M999;將線段OM1分成1000等份,其分點由左向右依次為N1N2N999;將線段ON1分成1000等份,其分點由左向右依次為P1,P2P999.則點P314所表示的數(shù)用科學記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安慶市在精準扶貧活動中,因地制宜指導農(nóng)民調(diào)整種植結(jié)構(gòu),增加種植效益,2018年李大伯家在工作隊的幫助下,計劃種植馬鈴薯和蔬菜共15畝,預(yù)計每畝的投入與產(chǎn)出如下表:(每畝產(chǎn)出-每畝投入=每畝純收入)

種類

投入(元)

產(chǎn)出(元)

馬鈴薯

1000

4500

蔬菜

1200

5300

1)如果這15畝地的純收入要達到54900元,需種植馬鈴薯和蔬菜各多少畝?

2)如果總投入不超過16000元,則最多種植蔬菜多少畝?該情況下15畝地的純收入是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上一點,AB=DB,BE平分∠ABC,交AC于點E,連接DE

1)求證:△ABE≌△DBE;

2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市火車站北廣場將于2016年底投入使用,計劃在廣場內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600 棵.
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排13人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40 棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點D在BC的延長線上,且BD=AB,過點B作BE⊥AC,與BD的垂線DE交于點E.

(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法).

查看答案和解析>>

同步練習冊答案