【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F.切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,若AC∥EF,試判斷線段KG、KD、GE間的數(shù)量關(guān)系,并說明理由;
(3)在(2)的條件下,若sinE=,AK=2,求⊙O的半徑.
【答案】(1)見解析;(2)KG2=KDGE,見解析;(3)
【解析】
(1)如圖1,連接OG.根據(jù)切線性質(zhì)及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根據(jù)等角對等邊得到KE=GE;
(2)如圖2,根據(jù)平行得角相等,證明△GKD∽△EFG,列比例式可得結(jié)論;
(3)如圖3所示,連接OG,OC,由(1)得KE=GE,根據(jù)sinE,設(shè)AH=3t,則AC=5t,CH=4t,列式先求t的值,再求出圓的半徑.
(1)如圖1,連接OG.
∵EG為切線,
∴∠KGE+∠OGA=90°.
∵CD⊥AB,
∴∠AKH+∠OAG=90°.
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)KG2=KDGE.理由如下:
連接GD,如圖2.
∵AC∥EF,
∴∠C=∠E.
∵∠C=∠AGD,
∴∠E=∠AGD.
∵∠GKD=∠GKD,
∴△GKD∽△EKG,
∴,
∴KG2=KDEK,
由(1)得:EK=GE,
∴KG2=KDGE;
(3)連接OG,OC,如圖3所示,
由(1)得:KE=GE.
∵AC∥EF,
∴∠E=∠ACH.
∵sinE=sin∠ACH,
設(shè)AH=3t,則AC=5t,CH=4t.
∵KE=GE,AC∥EF,
∴CK=AC=5t,
∴HK=CK﹣CH=t.
在Rt△AHK中,根據(jù)勾股定理得AH2+HK2=AK2,
即(3t)2+t2,解得:t.
設(shè)⊙O半徑為r.在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r﹣3t)2+(4t)2=r2,解得:rt,
答:⊙O的半徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某公司用800萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,進(jìn)一步投入資金1550萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價需要定在200元到300元之間較為合理.銷售單價(元)與年銷售量(萬件)之間的變化可近似的看作是如下表所反應(yīng)的一次函數(shù):
銷售單價(元) | 200 | 230 | 250 |
年銷售量(萬件) | 14 | 11 | 9 |
(1)請求出與之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;
(2)請說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:連接拋物線上兩點的線段叫拋物線的弦,在這兩點之間拋物線上的任意一點P與此兩點構(gòu)成的三角形稱作拋物線的弦三角,點P稱作弦錐,設(shè)點P的橫坐標(biāo)為x.
已知拋物線經(jīng)過A(1,2)、B(m,n)、C(3,﹣2)三點,P是拋物線上AC之間的一點,以AC為弦的弦三角為△PAC.
(1)圖一,當(dāng)m=2,n=1時,求該拋物線的解析式,若x=k1時△PAC的面積最大,求k1的值.
(2)圖二,當(dāng)m=2,n≠1時,用n表示該拋物線的解析式,若x=k2時△PAC的面積最大,求k2的值.k1與k2有何數(shù)量關(guān)系?
(3)圖三,當(dāng)m≠2,n≠1時,用m,n表示該拋物線的解析式,若x=k3時△PAC的面積最大,求k3的值.觀察圖1,2,3,過定點A、C,根據(jù)B在各種不同位置所得計算結(jié)果,你發(fā)現(xiàn)通過兩個定點的拋物線系中,以此兩點為弦的弦三角的面積取得最大值時,弦錐的橫坐標(biāo)有何規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關(guān)系式;
(2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應(yīng)為多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為 ;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文明小區(qū)50平方米和80平方米兩種戶型的住宅,50平方米住宅套數(shù)是80平方米住宅套數(shù)的2倍.物管公司月底按每平方米2元收取當(dāng)月物管費,該小區(qū)全部住宅都人住且每戶均按時全額繳納物管費.
(1)該小區(qū)每月可收取物管費90 000元,問該小區(qū)共有多少套80平方米的住宅?
(2)為建設(shè)“資源節(jié)約型社會”,該小區(qū)物管公司5月初推出活動一:“垃圾分類送禮物”,50平方米和80平方米的住戶分別有40%和20%參加了此次括動.為提離大家的積扱性,6月份準(zhǔn)備把活動一升級為活動二:“拉圾分類抵扣物管費”,同時終止活動一.經(jīng)調(diào)査與測算,參加活動一的住戶會全部參加活動二,參加活動二的住戶會大幅增加,這樣,6月份參加活動的50平方米的總戶數(shù)在5月份參加活動的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費將會減少;6月份參加活動的80平方米的總戶數(shù)在5月份參加活動的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費將會減少.這樣,參加活動的這部分住戶6月份總共繳納的物管費比他們按原方式共繳納的物管費將減少,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡度i=1:的斜坡AB上立有一電線桿EF,工程師在點A處測得E的仰角為60°,沿斜坡前進(jìn)20米到達(dá)B,此時測得點E的仰角為15°,現(xiàn)要在斜坡AB上找一點P,在P處安裝一根拉繩PE來固定電線桿,以使EF保持豎直,為使拉繩PE最短,則FP的長度約為_____.(參考數(shù)據(jù):=1.414,=1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,AB=5,BC=4,點D為邊AC上的動點,作菱形DEFG,使點E、F在邊AB上,點G在邊BC上.若這樣的菱形能作出兩個,則AD的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/s秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動,點P運動到F點時停止運動,點Q也同時停止運動,當(dāng)點P運動__秒時,以P、Q、E、F為頂點的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com