【題目】如圖,已知等邊△ABC,AB=12.以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DF⊥AC,垂足為F,過(guò)點(diǎn)F作FG⊥AB,垂足為G,連結(jié)GD.
(1)求證:DF是⊙O的切線;
(2)求FG的長(zhǎng);
(3)求△FDG的面積.
【答案】(1)詳見(jiàn)解析;(2);(3)
【解析】
(1) 如圖所示,連接OD.由題意可知∠A=∠B=∠C=60°,則OD=OB,可以證明△OBD為等邊三角形,易得∠C=∠ODB=60°,再運(yùn)用平行線的性質(zhì)和判定以及等量代換即可完成解答.
(2)先說(shuō)明OD為△ABC的中位線,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得CF=CD,則AF=AC-CF=9,最后在Rt△AFG中,根據(jù)正弦的定義即可解答;
(3)作DH⊥FG,CD=6,CF=3,DF=3,FH=,DH=,最后根據(jù)三角形的面積公式解答即可.
解:(1)如圖所示,連接OD.
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°
∵OD=OB
∴△OBD為等邊三角形,
∴∠C=∠ODB=60°,
∴AC∥OD,
∴∠CFD=∠FDO,
∵DF⊥AC,
∴∠CFD=∠FDO=90°,
∴DF是⊙O的切線
(2)因?yàn)辄c(diǎn)O是AB的中點(diǎn),則OD是△ABC的中位線.
∵△ABC是等邊三角形,AB=12,
∴AB= AC= BC= 12, CD=BD=BC=6
∵∠C=60°,∠CFD=90°,
∴∠CDF=30°,同理可得∠AFG=30°,
∴CF=CD=3
∴AF=12-3=9.
∴.
(3)作DH⊥FG,CD=6,CF=3,DF=3
∴FH=,DH=
∴△FDG的面積為DHFG=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寒假中,小王向小李借一本數(shù)學(xué)培優(yōu)資料,但相互找不到對(duì)方的家,電話中兩人商量,走兩家之間長(zhǎng)度為2400米的一條路,相向而行.小李在小王出發(fā)5分鐘后帶上數(shù)學(xué)培優(yōu)資料出發(fā).在整個(gè)行走過(guò)程中,兩人均保持各自的速度勻速行走.兩人相距的路程y(單位:米)與小王出發(fā)的時(shí)間x(單位:分)之間的關(guān)系如圖所示,則兩人相遇時(shí),小李走了_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O交BC于點(diǎn)D,連結(jié)AD,請(qǐng)你添加一個(gè)條件,使△ABD≌△ACD,并說(shuō)明全等的理由.
你添加的條件是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形 ABCD 中, G 為 BC 邊上一點(diǎn), BE AG 于 E , DF AG 于 F ,連接 DE .
(1)求證: ABE DAF ;
(2)若 AF 1,四邊形 ABED 的面積為6 ,求 EF 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上.將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫(huà)出△AB′C′;
(2)計(jì)算線段AB在變換到AB′的過(guò)程中掃過(guò)的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與軸和軸分別交于點(diǎn)和點(diǎn)拋物線經(jīng)過(guò)點(diǎn)與直線的另一個(gè)交點(diǎn)為.
求的值和拋物線的解析式
點(diǎn)在拋物線上,軸交直線于點(diǎn)點(diǎn)在直線上,且四邊形為矩形.設(shè)點(diǎn)的橫坐標(biāo)為矩形的周長(zhǎng)為求與的函數(shù)關(guān)系式以及的最大值
將繞平面內(nèi)某點(diǎn)逆時(shí)針旋轉(zhuǎn)得到(點(diǎn)分別與點(diǎn)對(duì)應(yīng)),若的兩個(gè)頂點(diǎn)恰好落在拋物線上,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+2ax+c(a<0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),頂點(diǎn)為D,一次函數(shù)y=mx﹣3的圖象與y軸交于E點(diǎn),與二次函數(shù)的對(duì)稱軸交于F點(diǎn),且tan∠FDC=.
(1)求a的值;
(2)若四邊形DCEF為平行四邊形,求二次函數(shù)表達(dá)式.
(3)在(2)的條件下設(shè)點(diǎn)M是線段OC上一點(diǎn),連接AM,點(diǎn)P從點(diǎn)A出發(fā),先以1個(gè)單位長(zhǎng)度/s的速度沿線段AM到達(dá)點(diǎn)M,再以個(gè)單位長(zhǎng)度/s的速度沿MC到達(dá)點(diǎn)C,求點(diǎn)P到達(dá)點(diǎn)C所用最短時(shí)間為 s(直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=kx+1與y=﹣(k≠0)的圖象大致是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)一定要講究方法,比如有效的預(yù)習(xí)可大幅提高聽(tīng)課效率.九年級(jí)(1)班學(xué)習(xí)興趣小組為了了解全校九年級(jí)學(xué)生的預(yù)習(xí)情況,對(duì)該校九年級(jí)學(xué)生每天的課前預(yù)習(xí)時(shí)間(單位:)進(jìn)行了抽樣調(diào)查.并將抽查得到的數(shù)據(jù)分成5組,下面是未完成的頻數(shù)、頓率分布表和頻數(shù)分布扇形圖.
組別 | 課前預(yù)習(xí)時(shí)間 | 頻數(shù)(人數(shù)) | 頻率 |
1 | 2 | ||
2 | 0.10 | ||
3 | 16 | 0.32 | |
4 | |||
5 | 3 |
請(qǐng)根據(jù)圖表中的信息,回答下列問(wèn)題:
(1)本次調(diào)查的樣本容量為 ,表中的 , , ;
(2)試計(jì)算第4組人數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)該校九年級(jí)其有1000名學(xué)生,請(qǐng)估計(jì)這些學(xué)生中每天課前預(yù)習(xí)時(shí)間不少于的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com